NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  elpw121c Unicode version

Theorem elpw121c 4149
Description: Membership in 1 1 1c. (Contributed by SF, 13-Jan-2015.)
Assertion
Ref Expression
elpw121c 1 1 1c
Distinct variable group:   ,

Proof of Theorem elpw121c
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 elpw1 4145 . 2 1 1 1c 1 1c
2 df-rex 2621 . . . 4 1 1c 1 1c
3 elpw11c 4148 . . . . . . 7 1 1c
43anbi1i 676 . . . . . 6 1 1c
5 19.41v 1901 . . . . . 6
64, 5bitr4i 243 . . . . 5 1 1c
76exbii 1582 . . . 4 1 1c
82, 7bitri 240 . . 3 1 1c
9 excom 1741 . . . 4
10 snex 4112 . . . . . 6
11 sneq 3745 . . . . . . 7
1211eqeq2d 2364 . . . . . 6
1310, 12ceqsexv 2895 . . . . 5
1413exbii 1582 . . . 4
159, 14bitri 240 . . 3
168, 15bitri 240 . 2 1 1c
171, 16bitri 240 1 1 1 1c
Colors of variables: wff setvar class
Syntax hints:   wb 176   wa 358  wex 1541   wceq 1642   wcel 1710  wrex 2616  csn 3738  1cc1c 4135  1 cpw1 4136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-rex 2621  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-ss 3260  df-nul 3552  df-pw 3725  df-sn 3742  df-1c 4137  df-pw1 4138
This theorem is referenced by:  elpw131c  4150  opkelimagekg  4272  ndisjrelk  4324  eqpwrelk  4479  ncfinraiselem2  4481  ncfinlowerlem1  4483  eqtfinrelk  4487  evenfinex  4504  oddfinex  4505  evenodddisjlem1  4516  nnadjoinlem1  4520  nnpweqlem1  4523  srelk  4525  tfinnnlem1  4534  spfinex  4538  dfop2lem1  4574  setconslem2  4733
  Copyright terms: Public domain W3C validator