New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > elpw121c | GIF version |
Description: Membership in ℘1℘11c. (Contributed by SF, 13-Jan-2015.) |
Ref | Expression |
---|---|
elpw121c | ⊢ (A ∈ ℘1℘11c ↔ ∃x A = {{{x}}}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpw1 4145 | . 2 ⊢ (A ∈ ℘1℘11c ↔ ∃y ∈ ℘1 1cA = {y}) | |
2 | df-rex 2621 | . . . 4 ⊢ (∃y ∈ ℘1 1cA = {y} ↔ ∃y(y ∈ ℘11c ∧ A = {y})) | |
3 | elpw11c 4148 | . . . . . . 7 ⊢ (y ∈ ℘11c ↔ ∃x y = {{x}}) | |
4 | 3 | anbi1i 676 | . . . . . 6 ⊢ ((y ∈ ℘11c ∧ A = {y}) ↔ (∃x y = {{x}} ∧ A = {y})) |
5 | 19.41v 1901 | . . . . . 6 ⊢ (∃x(y = {{x}} ∧ A = {y}) ↔ (∃x y = {{x}} ∧ A = {y})) | |
6 | 4, 5 | bitr4i 243 | . . . . 5 ⊢ ((y ∈ ℘11c ∧ A = {y}) ↔ ∃x(y = {{x}} ∧ A = {y})) |
7 | 6 | exbii 1582 | . . . 4 ⊢ (∃y(y ∈ ℘11c ∧ A = {y}) ↔ ∃y∃x(y = {{x}} ∧ A = {y})) |
8 | 2, 7 | bitri 240 | . . 3 ⊢ (∃y ∈ ℘1 1cA = {y} ↔ ∃y∃x(y = {{x}} ∧ A = {y})) |
9 | excom 1741 | . . . 4 ⊢ (∃y∃x(y = {{x}} ∧ A = {y}) ↔ ∃x∃y(y = {{x}} ∧ A = {y})) | |
10 | snex 4112 | . . . . . 6 ⊢ {{x}} ∈ V | |
11 | sneq 3745 | . . . . . . 7 ⊢ (y = {{x}} → {y} = {{{x}}}) | |
12 | 11 | eqeq2d 2364 | . . . . . 6 ⊢ (y = {{x}} → (A = {y} ↔ A = {{{x}}})) |
13 | 10, 12 | ceqsexv 2895 | . . . . 5 ⊢ (∃y(y = {{x}} ∧ A = {y}) ↔ A = {{{x}}}) |
14 | 13 | exbii 1582 | . . . 4 ⊢ (∃x∃y(y = {{x}} ∧ A = {y}) ↔ ∃x A = {{{x}}}) |
15 | 9, 14 | bitri 240 | . . 3 ⊢ (∃y∃x(y = {{x}} ∧ A = {y}) ↔ ∃x A = {{{x}}}) |
16 | 8, 15 | bitri 240 | . 2 ⊢ (∃y ∈ ℘1 1cA = {y} ↔ ∃x A = {{{x}}}) |
17 | 1, 16 | bitri 240 | 1 ⊢ (A ∈ ℘1℘11c ↔ ∃x A = {{{x}}}) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∧ wa 358 ∃wex 1541 = wceq 1642 ∈ wcel 1710 ∃wrex 2616 {csn 3738 1cc1c 4135 ℘1cpw1 4136 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-rex 2621 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-ss 3260 df-nul 3552 df-pw 3725 df-sn 3742 df-1c 4137 df-pw1 4138 |
This theorem is referenced by: elpw131c 4150 opkelimagekg 4272 ndisjrelk 4324 eqpwrelk 4479 ncfinraiselem2 4481 ncfinlowerlem1 4483 eqtfinrelk 4487 evenfinex 4504 oddfinex 4505 evenodddisjlem1 4516 nnadjoinlem1 4520 nnpweqlem1 4523 srelk 4525 tfinnnlem1 4534 spfinex 4538 dfop2lem1 4574 setconslem2 4733 |
Copyright terms: Public domain | W3C validator |