New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > elsnc | Unicode version |
Description: There is only one element in a singleton. Exercise 2 of [TakeutiZaring] p. 15. (Contributed by NM, 13-Sep-1995.) |
Ref | Expression |
---|---|
elsnc.1 |
Ref | Expression |
---|---|
elsnc |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elsnc.1 | . 2 | |
2 | elsncg 3756 | . 2 | |
3 | 1, 2 | ax-mp 5 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wb 176 wceq 1642 wcel 1710 cvv 2860 csn 3738 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-sn 3742 |
This theorem is referenced by: sneqr 3873 sniota 4370 nnsucelrlem1 4425 nnsucelrlem3 4427 nnsucelr 4429 nndisjeq 4430 ltfinex 4465 ltfintrilem1 4466 ssfin 4471 eqtfinrelk 4487 oddfinex 4505 evenoddnnnul 4515 evenodddisjlem1 4516 nnadjoinlem1 4520 vfinspss 4552 dfop2lem1 4574 setconslem2 4733 dmsnn0 5065 dmsnopg 5067 cnvsn 5074 rnsnop 5076 funsn 5148 iunfopab 5205 funconstss 5407 fsn 5433 fvclss 5463 1p1e2c 6156 fce 6189 dmfrec 6317 |
Copyright terms: Public domain | W3C validator |