New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > fsn | Unicode version |
Description: A function maps a singleton to a singleton iff it is the singleton of an ordered pair. (Contributed by NM, 10-Dec-2003.) |
Ref | Expression |
---|---|
fsn.1 | |
fsn.2 |
Ref | Expression |
---|---|
fsn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelf 5236 | . . . . . . 7 | |
2 | elsn 3749 | . . . . . . . 8 | |
3 | elsn 3749 | . . . . . . . 8 | |
4 | 2, 3 | anbi12i 678 | . . . . . . 7 |
5 | 1, 4 | sylib 188 | . . . . . 6 |
6 | 5 | ex 423 | . . . . 5 |
7 | fsn.1 | . . . . . . . . 9 | |
8 | 7 | snid 3761 | . . . . . . . 8 |
9 | feu 5243 | . . . . . . . 8 | |
10 | 8, 9 | mpan2 652 | . . . . . . 7 |
11 | 3 | anbi1i 676 | . . . . . . . . . 10 |
12 | opeq2 4580 | . . . . . . . . . . . . 13 | |
13 | 12 | eleq1d 2419 | . . . . . . . . . . . 12 |
14 | 13 | pm5.32i 618 | . . . . . . . . . . 11 |
15 | ancom 437 | . . . . . . . . . . 11 | |
16 | 14, 15 | bitr4i 243 | . . . . . . . . . 10 |
17 | 11, 16 | bitr2i 241 | . . . . . . . . 9 |
18 | 17 | eubii 2213 | . . . . . . . 8 |
19 | fsn.2 | . . . . . . . . . . 11 | |
20 | 19 | eueq1 3010 | . . . . . . . . . 10 |
21 | 20 | biantru 491 | . . . . . . . . 9 |
22 | euanv 2265 | . . . . . . . . 9 | |
23 | 21, 22 | bitr4i 243 | . . . . . . . 8 |
24 | df-reu 2622 | . . . . . . . 8 | |
25 | 18, 23, 24 | 3bitr4i 268 | . . . . . . 7 |
26 | 10, 25 | sylibr 203 | . . . . . 6 |
27 | opeq12 4581 | . . . . . . 7 | |
28 | 27 | eleq1d 2419 | . . . . . 6 |
29 | 26, 28 | syl5ibrcom 213 | . . . . 5 |
30 | 6, 29 | impbid 183 | . . . 4 |
31 | vex 2863 | . . . . . . 7 | |
32 | vex 2863 | . . . . . . 7 | |
33 | 31, 32 | opex 4589 | . . . . . 6 |
34 | 33 | elsnc 3757 | . . . . 5 |
35 | opth 4603 | . . . . 5 | |
36 | 34, 35 | bitr2i 241 | . . . 4 |
37 | 30, 36 | syl6bb 252 | . . 3 |
38 | 37 | eqrelrdv 4853 | . 2 |
39 | 7, 19 | f1osn 5323 | . . . 4 |
40 | f1oeq1 5282 | . . . 4 | |
41 | 39, 40 | mpbiri 224 | . . 3 |
42 | f1of 5288 | . . 3 | |
43 | 41, 42 | syl 15 | . 2 |
44 | 38, 43 | impbii 180 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wb 176 wa 358 wceq 1642 wcel 1710 weu 2204 wreu 2617 cvv 2860 csn 3738 cop 4562 wf 4778 wf1o 4781 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-evenfin 4445 df-oddfin 4446 df-sfin 4447 df-spfin 4448 df-phi 4566 df-op 4567 df-proj1 4568 df-proj2 4569 df-opab 4624 df-br 4641 df-co 4727 df-ima 4728 df-id 4768 df-xp 4785 df-cnv 4786 df-rn 4787 df-dm 4788 df-fun 4790 df-fn 4791 df-f 4792 df-f1 4793 df-fo 4794 df-f1o 4795 |
This theorem is referenced by: fsng 5434 fsn2 5435 xpsn 5436 mapsn 6027 |
Copyright terms: Public domain | W3C validator |