| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > intab | Unicode version | ||
| Description: The intersection of a
special case of a class abstraction. |
| Ref | Expression |
|---|---|
| intab.1 |
|
| intab.2 |
|
| Ref | Expression |
|---|---|
| intab |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1 2359 |
. . . . . . . . . 10
| |
| 2 | 1 | anbi2d 684 |
. . . . . . . . 9
|
| 3 | 2 | exbidv 1626 |
. . . . . . . 8
|
| 4 | 3 | cbvabv 2473 |
. . . . . . 7
|
| 5 | intab.2 |
. . . . . . 7
| |
| 6 | 4, 5 | eqeltri 2423 |
. . . . . 6
|
| 7 | nfe1 1732 |
. . . . . . . . 9
| |
| 8 | 7 | nfab 2494 |
. . . . . . . 8
|
| 9 | 8 | nfeq2 2501 |
. . . . . . 7
|
| 10 | eleq2 2414 |
. . . . . . . 8
| |
| 11 | 10 | imbi2d 307 |
. . . . . . 7
|
| 12 | 9, 11 | albid 1772 |
. . . . . 6
|
| 13 | 6, 12 | elab 2986 |
. . . . 5
|
| 14 | 19.8a 1756 |
. . . . . . . . 9
| |
| 15 | 14 | ex 423 |
. . . . . . . 8
|
| 16 | 15 | alrimiv 1631 |
. . . . . . 7
|
| 17 | intab.1 |
. . . . . . . 8
| |
| 18 | 17 | sbc6 3073 |
. . . . . . 7
|
| 19 | 16, 18 | sylibr 203 |
. . . . . 6
|
| 20 | df-sbc 3048 |
. . . . . 6
| |
| 21 | 19, 20 | sylib 188 |
. . . . 5
|
| 22 | 13, 21 | mpgbir 1550 |
. . . 4
|
| 23 | intss1 3942 |
. . . 4
| |
| 24 | 22, 23 | ax-mp 5 |
. . 3
|
| 25 | 19.29r 1597 |
. . . . . . . 8
| |
| 26 | simplr 731 |
. . . . . . . . . 10
| |
| 27 | pm3.35 570 |
. . . . . . . . . . 11
| |
| 28 | 27 | adantlr 695 |
. . . . . . . . . 10
|
| 29 | 26, 28 | eqeltrd 2427 |
. . . . . . . . 9
|
| 30 | 29 | exlimiv 1634 |
. . . . . . . 8
|
| 31 | 25, 30 | syl 15 |
. . . . . . 7
|
| 32 | 31 | ex 423 |
. . . . . 6
|
| 33 | 32 | alrimiv 1631 |
. . . . 5
|
| 34 | vex 2863 |
. . . . . 6
| |
| 35 | 34 | elintab 3938 |
. . . . 5
|
| 36 | 33, 35 | sylibr 203 |
. . . 4
|
| 37 | 36 | abssi 3342 |
. . 3
|
| 38 | 24, 37 | eqssi 3289 |
. 2
|
| 39 | 38, 4 | eqtri 2373 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-ss 3260 df-int 3928 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |