New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > intab | Unicode version |
Description: The intersection of a special case of a class abstraction. may be free in and , which can be thought of a and . Typically, abrexex2 in set.mm or abexssex in set.mm can be used to satisfy the second hypothesis. (Contributed by NM, 28-Jul-2006.) (Proof shortened by Mario Carneiro, 14-Nov-2016.) |
Ref | Expression |
---|---|
intab.1 | |
intab.2 |
Ref | Expression |
---|---|
intab |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2359 | . . . . . . . . . 10 | |
2 | 1 | anbi2d 684 | . . . . . . . . 9 |
3 | 2 | exbidv 1626 | . . . . . . . 8 |
4 | 3 | cbvabv 2473 | . . . . . . 7 |
5 | intab.2 | . . . . . . 7 | |
6 | 4, 5 | eqeltri 2423 | . . . . . 6 |
7 | nfe1 1732 | . . . . . . . . 9 | |
8 | 7 | nfab 2494 | . . . . . . . 8 |
9 | 8 | nfeq2 2501 | . . . . . . 7 |
10 | eleq2 2414 | . . . . . . . 8 | |
11 | 10 | imbi2d 307 | . . . . . . 7 |
12 | 9, 11 | albid 1772 | . . . . . 6 |
13 | 6, 12 | elab 2986 | . . . . 5 |
14 | 19.8a 1756 | . . . . . . . . 9 | |
15 | 14 | ex 423 | . . . . . . . 8 |
16 | 15 | alrimiv 1631 | . . . . . . 7 |
17 | intab.1 | . . . . . . . 8 | |
18 | 17 | sbc6 3073 | . . . . . . 7 |
19 | 16, 18 | sylibr 203 | . . . . . 6 |
20 | df-sbc 3048 | . . . . . 6 | |
21 | 19, 20 | sylib 188 | . . . . 5 |
22 | 13, 21 | mpgbir 1550 | . . . 4 |
23 | intss1 3942 | . . . 4 | |
24 | 22, 23 | ax-mp 5 | . . 3 |
25 | 19.29r 1597 | . . . . . . . 8 | |
26 | simplr 731 | . . . . . . . . . 10 | |
27 | pm3.35 570 | . . . . . . . . . . 11 | |
28 | 27 | adantlr 695 | . . . . . . . . . 10 |
29 | 26, 28 | eqeltrd 2427 | . . . . . . . . 9 |
30 | 29 | exlimiv 1634 | . . . . . . . 8 |
31 | 25, 30 | syl 15 | . . . . . . 7 |
32 | 31 | ex 423 | . . . . . 6 |
33 | 32 | alrimiv 1631 | . . . . 5 |
34 | vex 2863 | . . . . . 6 | |
35 | 34 | elintab 3938 | . . . . 5 |
36 | 33, 35 | sylibr 203 | . . . 4 |
37 | 36 | abssi 3342 | . . 3 |
38 | 24, 37 | eqssi 3289 | . 2 |
39 | 38, 4 | eqtri 2373 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wi 4 wa 358 wal 1540 wex 1541 wceq 1642 wcel 1710 cab 2339 cvv 2860 wsbc 3047 wss 3258 cint 3927 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-ss 3260 df-int 3928 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |