| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > 0nelsuc | Unicode version | ||
| Description: The empty class is not a member of a successor. (Contributed by SF, 14-Jan-2015.) |
| Ref | Expression |
|---|---|
| 0nelsuc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | el1c 4140 |
. . . . . . . . 9
| |
| 2 | vex 2863 |
. . . . . . . . . . . . 13
| |
| 3 | 2 | snid 3761 |
. . . . . . . . . . . 12
|
| 4 | n0i 3556 |
. . . . . . . . . . . 12
| |
| 5 | 3, 4 | ax-mp 5 |
. . . . . . . . . . 11
|
| 6 | eqeq1 2359 |
. . . . . . . . . . 11
| |
| 7 | 5, 6 | mtbiri 294 |
. . . . . . . . . 10
|
| 8 | 7 | exlimiv 1634 |
. . . . . . . . 9
|
| 9 | 1, 8 | sylbi 187 |
. . . . . . . 8
|
| 10 | simpr 447 |
. . . . . . . 8
| |
| 11 | 9, 10 | nsyl 113 |
. . . . . . 7
|
| 12 | un00 3587 |
. . . . . . . . 9
| |
| 13 | eqcom 2355 |
. . . . . . . . 9
| |
| 14 | 12, 13 | bitri 240 |
. . . . . . . 8
|
| 15 | 14 | notbii 287 |
. . . . . . 7
|
| 16 | 11, 15 | sylib 188 |
. . . . . 6
|
| 17 | simpr 447 |
. . . . . 6
| |
| 18 | 16, 17 | nsyl 113 |
. . . . 5
|
| 19 | 18 | nrex 2717 |
. . . 4
|
| 20 | 19 | a1i 10 |
. . 3
|
| 21 | 20 | nrex 2717 |
. 2
|
| 22 | eladdc 4399 |
. 2
| |
| 23 | 21, 22 | mtbir 290 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-sn 4088 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-ss 3260 df-nul 3552 df-sn 3742 df-1c 4137 df-addc 4379 |
| This theorem is referenced by: 0cnsuc 4402 nndisjeq 4430 sfinltfin 4536 |
| Copyright terms: Public domain | W3C validator |