| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > 0nelsuc | Unicode version | ||
| Description: The empty class is not a member of a successor. (Contributed by SF, 14-Jan-2015.) | 
| Ref | Expression | 
|---|---|
| 0nelsuc | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | el1c 4140 | 
. . . . . . . . 9
 | |
| 2 | vex 2863 | 
. . . . . . . . . . . . 13
 | |
| 3 | 2 | snid 3761 | 
. . . . . . . . . . . 12
 | 
| 4 | n0i 3556 | 
. . . . . . . . . . . 12
 | |
| 5 | 3, 4 | ax-mp 5 | 
. . . . . . . . . . 11
 | 
| 6 | eqeq1 2359 | 
. . . . . . . . . . 11
 | |
| 7 | 5, 6 | mtbiri 294 | 
. . . . . . . . . 10
 | 
| 8 | 7 | exlimiv 1634 | 
. . . . . . . . 9
 | 
| 9 | 1, 8 | sylbi 187 | 
. . . . . . . 8
 | 
| 10 | simpr 447 | 
. . . . . . . 8
 | |
| 11 | 9, 10 | nsyl 113 | 
. . . . . . 7
 | 
| 12 | un00 3587 | 
. . . . . . . . 9
 | |
| 13 | eqcom 2355 | 
. . . . . . . . 9
 | |
| 14 | 12, 13 | bitri 240 | 
. . . . . . . 8
 | 
| 15 | 14 | notbii 287 | 
. . . . . . 7
 | 
| 16 | 11, 15 | sylib 188 | 
. . . . . 6
 | 
| 17 | simpr 447 | 
. . . . . 6
 | |
| 18 | 16, 17 | nsyl 113 | 
. . . . 5
 | 
| 19 | 18 | nrex 2717 | 
. . . 4
 | 
| 20 | 19 | a1i 10 | 
. . 3
 | 
| 21 | 20 | nrex 2717 | 
. 2
 | 
| 22 | eladdc 4399 | 
. 2
 | |
| 23 | 21, 22 | mtbir 290 | 
1
 | 
| Colors of variables: wff setvar class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-sn 4088 | 
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-ss 3260 df-nul 3552 df-sn 3742 df-1c 4137 df-addc 4379 | 
| This theorem is referenced by: 0cnsuc 4402 nndisjeq 4430 sfinltfin 4536 | 
| Copyright terms: Public domain | W3C validator |