NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  n0i Unicode version

Theorem n0i 3556
Description: If a set has elements, it is not empty. (Contributed by NM, 31-Dec-1993.)
Assertion
Ref Expression
n0i

Proof of Theorem n0i
StepHypRef Expression
1 noel 3555 . . 3
2 eleq2 2414 . . 3
31, 2mtbiri 294 . 2
43con2i 112 1
Colors of variables: wff setvar class
Syntax hints:   wn 3   wi 4   wceq 1642   wcel 1710  c0 3551
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-dif 3216  df-nul 3552
This theorem is referenced by:  ne0i  3557  0nelsuc  4401  nndisjeq  4430  nnceleq  4431  sfinltfin  4536  vfin1cltv  4548  funiunfv  5468  ecexr  5951  nceleq  6150  1p1e2c  6156  2p1e3c  6157
  Copyright terms: Public domain W3C validator