| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > n0i | GIF version | ||
| Description: If a set has elements, it is not empty. (Contributed by NM, 31-Dec-1993.) | 
| Ref | Expression | 
|---|---|
| n0i | ⊢ (B ∈ A → ¬ A = ∅) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | noel 3555 | . . 3 ⊢ ¬ B ∈ ∅ | |
| 2 | eleq2 2414 | . . 3 ⊢ (A = ∅ → (B ∈ A ↔ B ∈ ∅)) | |
| 3 | 1, 2 | mtbiri 294 | . 2 ⊢ (A = ∅ → ¬ B ∈ A) | 
| 4 | 3 | con2i 112 | 1 ⊢ (B ∈ A → ¬ A = ∅) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1642 ∈ wcel 1710 ∅c0 3551 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 | 
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-dif 3216 df-nul 3552 | 
| This theorem is referenced by: ne0i 3557 0nelsuc 4401 nndisjeq 4430 nnceleq 4431 sfinltfin 4536 vfin1cltv 4548 funiunfv 5468 ecexr 5951 nceleq 6150 1p1e2c 6156 2p1e3c 6157 | 
| Copyright terms: Public domain | W3C validator |