NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  nfcvf GIF version

Theorem nfcvf 2512
Description: If x and y are distinct, then x is not free in y. (Contributed by Mario Carneiro, 8-Oct-2016.)
Assertion
Ref Expression
nfcvf x x = yxy)

Proof of Theorem nfcvf
Dummy variable z is distinct from all other variables.
StepHypRef Expression
1 nfcv 2490 . 2 xz
2 nfcv 2490 . 2 zy
3 id 19 . 2 (z = yz = y)
41, 2, 3dvelimc 2511 1 x x = yxy)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1540   = wceq 1642  wnfc 2477
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-cleq 2346  df-clel 2349  df-nfc 2479
This theorem is referenced by:  nfcvf2  2513  nfrald  2666  ralcom2  2776  nfreud  2784  nfrmod  2785  nfrmo  2787  nfiotad  4343
  Copyright terms: Public domain W3C validator