New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > nfcvf | GIF version |
Description: If x and y are distinct, then x is not free in y. (Contributed by Mario Carneiro, 8-Oct-2016.) |
Ref | Expression |
---|---|
nfcvf | ⊢ (¬ ∀x x = y → Ⅎxy) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2490 | . 2 ⊢ Ⅎxz | |
2 | nfcv 2490 | . 2 ⊢ Ⅎzy | |
3 | id 19 | . 2 ⊢ (z = y → z = y) | |
4 | 1, 2, 3 | dvelimc 2511 | 1 ⊢ (¬ ∀x x = y → Ⅎxy) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1540 = wceq 1642 Ⅎwnfc 2477 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-cleq 2346 df-clel 2349 df-nfc 2479 |
This theorem is referenced by: nfcvf2 2513 nfrald 2666 ralcom2 2776 nfreud 2784 nfrmod 2785 nfrmo 2787 nfiotad 4343 |
Copyright terms: Public domain | W3C validator |