New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > nnltp1clem1 | Unicode version |
Description: Lemma for nnltp1c 6262. Set up stratification. (Contributed by SF, 25-Mar-2015.) |
Ref | Expression |
---|---|
nnltp1clem1 | c 1c |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfix 5787 | . . . 4 c 1c c 1c | |
2 | brco 4883 | . . . . 5 c 1c 1c c | |
3 | vex 2862 | . . . . . . . . 9 | |
4 | vex 2862 | . . . . . . . . 9 | |
5 | 3, 4 | brcsuc 6260 | . . . . . . . 8 1c 1c |
6 | brcnv 4892 | . . . . . . . 8 c c | |
7 | 5, 6 | anbi12i 678 | . . . . . . 7 1c c 1c c |
8 | 7 | exbii 1582 | . . . . . 6 1c c 1c c |
9 | 1cex 4142 | . . . . . . . 8 1c | |
10 | 3, 9 | addcex 4394 | . . . . . . 7 1c |
11 | breq2 4643 | . . . . . . 7 1c c c 1c | |
12 | 10, 11 | ceqsexv 2894 | . . . . . 6 1c c c 1c |
13 | 8, 12 | bitri 240 | . . . . 5 1c c c 1c |
14 | 2, 13 | bitri 240 | . . . 4 c 1c c 1c |
15 | 1, 14 | bitri 240 | . . 3 c 1c c 1c |
16 | 15 | abbi2i 2464 | . 2 c 1c c 1c |
17 | ltcex 6116 | . . . . 5 c | |
18 | 17 | cnvex 5102 | . . . 4 c |
19 | csucex 6259 | . . . 4 1c | |
20 | 18, 19 | coex 4750 | . . 3 c 1c |
21 | 20 | fixex 5789 | . 2 c 1c |
22 | 16, 21 | eqeltrri 2424 | 1 c 1c |
Colors of variables: wff setvar class |
Syntax hints: wa 358 wex 1541 wceq 1642 wcel 1710 cab 2339 cvv 2859 1cc1c 4134 cplc 4375 class class class wbr 4639 ccom 4721 ccnv 4771 cmpt 5651 cfix 5739 c cltc 6090 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4078 ax-xp 4079 ax-cnv 4080 ax-1c 4081 ax-sset 4082 ax-si 4083 ax-ins2 4084 ax-ins3 4085 ax-typlower 4086 ax-sn 4087 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-ne 2518 df-ral 2619 df-rex 2620 df-reu 2621 df-rmo 2622 df-rab 2623 df-v 2861 df-sbc 3047 df-csb 3137 df-nin 3211 df-compl 3212 df-in 3213 df-un 3214 df-dif 3215 df-symdif 3216 df-ss 3259 df-pss 3261 df-nul 3551 df-if 3663 df-pw 3724 df-sn 3741 df-pr 3742 df-uni 3892 df-int 3927 df-iun 3971 df-opk 4058 df-1c 4136 df-pw1 4137 df-uni1 4138 df-xpk 4185 df-cnvk 4186 df-ins2k 4187 df-ins3k 4188 df-imak 4189 df-cok 4190 df-p6 4191 df-sik 4192 df-ssetk 4193 df-imagek 4194 df-idk 4195 df-iota 4339 df-0c 4377 df-addc 4378 df-nnc 4379 df-fin 4380 df-lefin 4440 df-ltfin 4441 df-ncfin 4442 df-tfin 4443 df-evenfin 4444 df-oddfin 4445 df-sfin 4446 df-spfin 4447 df-phi 4565 df-op 4566 df-proj1 4567 df-proj2 4568 df-opab 4623 df-br 4640 df-1st 4723 df-swap 4724 df-sset 4725 df-co 4726 df-ima 4727 df-si 4728 df-id 4767 df-xp 4784 df-cnv 4785 df-rn 4786 df-dm 4787 df-res 4788 df-fun 4789 df-fn 4790 df-f 4791 df-fo 4793 df-fv 4795 df-2nd 4797 df-ov 5526 df-oprab 5528 df-mpt 5652 df-mpt2 5654 df-txp 5736 df-fix 5740 df-cup 5742 df-disj 5744 df-addcfn 5746 df-ins2 5750 df-ins3 5752 df-ins4 5756 df-si3 5758 df-lec 6099 df-ltc 6100 |
This theorem is referenced by: nnltp1c 6262 |
Copyright terms: Public domain | W3C validator |