New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > nnltp1clem1 | GIF version |
Description: Lemma for nnltp1c 6263. Set up stratification. (Contributed by SF, 25-Mar-2015.) |
Ref | Expression |
---|---|
nnltp1clem1 | ⊢ {x ∣ x <c (x +c 1c)} ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfix 5788 | . . . 4 ⊢ (x ∈ Fix (◡ <c ∘ (w ∈ V ↦ (w +c 1c))) ↔ x(◡ <c ∘ (w ∈ V ↦ (w +c 1c)))x) | |
2 | brco 4884 | . . . . 5 ⊢ (x(◡ <c ∘ (w ∈ V ↦ (w +c 1c)))x ↔ ∃y(x(w ∈ V ↦ (w +c 1c))y ∧ y◡ <c x)) | |
3 | vex 2863 | . . . . . . . . 9 ⊢ x ∈ V | |
4 | vex 2863 | . . . . . . . . 9 ⊢ y ∈ V | |
5 | 3, 4 | brcsuc 6261 | . . . . . . . 8 ⊢ (x(w ∈ V ↦ (w +c 1c))y ↔ y = (x +c 1c)) |
6 | brcnv 4893 | . . . . . . . 8 ⊢ (y◡ <c x ↔ x <c y) | |
7 | 5, 6 | anbi12i 678 | . . . . . . 7 ⊢ ((x(w ∈ V ↦ (w +c 1c))y ∧ y◡ <c x) ↔ (y = (x +c 1c) ∧ x <c y)) |
8 | 7 | exbii 1582 | . . . . . 6 ⊢ (∃y(x(w ∈ V ↦ (w +c 1c))y ∧ y◡ <c x) ↔ ∃y(y = (x +c 1c) ∧ x <c y)) |
9 | 1cex 4143 | . . . . . . . 8 ⊢ 1c ∈ V | |
10 | 3, 9 | addcex 4395 | . . . . . . 7 ⊢ (x +c 1c) ∈ V |
11 | breq2 4644 | . . . . . . 7 ⊢ (y = (x +c 1c) → (x <c y ↔ x <c (x +c 1c))) | |
12 | 10, 11 | ceqsexv 2895 | . . . . . 6 ⊢ (∃y(y = (x +c 1c) ∧ x <c y) ↔ x <c (x +c 1c)) |
13 | 8, 12 | bitri 240 | . . . . 5 ⊢ (∃y(x(w ∈ V ↦ (w +c 1c))y ∧ y◡ <c x) ↔ x <c (x +c 1c)) |
14 | 2, 13 | bitri 240 | . . . 4 ⊢ (x(◡ <c ∘ (w ∈ V ↦ (w +c 1c)))x ↔ x <c (x +c 1c)) |
15 | 1, 14 | bitri 240 | . . 3 ⊢ (x ∈ Fix (◡ <c ∘ (w ∈ V ↦ (w +c 1c))) ↔ x <c (x +c 1c)) |
16 | 15 | abbi2i 2465 | . 2 ⊢ Fix (◡ <c ∘ (w ∈ V ↦ (w +c 1c))) = {x ∣ x <c (x +c 1c)} |
17 | ltcex 6117 | . . . . 5 ⊢ <c ∈ V | |
18 | 17 | cnvex 5103 | . . . 4 ⊢ ◡ <c ∈ V |
19 | csucex 6260 | . . . 4 ⊢ (w ∈ V ↦ (w +c 1c)) ∈ V | |
20 | 18, 19 | coex 4751 | . . 3 ⊢ (◡ <c ∘ (w ∈ V ↦ (w +c 1c))) ∈ V |
21 | 20 | fixex 5790 | . 2 ⊢ Fix (◡ <c ∘ (w ∈ V ↦ (w +c 1c))) ∈ V |
22 | 16, 21 | eqeltrri 2424 | 1 ⊢ {x ∣ x <c (x +c 1c)} ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 358 ∃wex 1541 = wceq 1642 ∈ wcel 1710 {cab 2339 Vcvv 2860 1cc1c 4135 +c cplc 4376 class class class wbr 4640 ∘ ccom 4722 ◡ccnv 4772 ↦ cmpt 5652 Fix cfix 5740 <c cltc 6091 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-csb 3138 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-iun 3972 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-evenfin 4445 df-oddfin 4446 df-sfin 4447 df-spfin 4448 df-phi 4566 df-op 4567 df-proj1 4568 df-proj2 4569 df-opab 4624 df-br 4641 df-1st 4724 df-swap 4725 df-sset 4726 df-co 4727 df-ima 4728 df-si 4729 df-id 4768 df-xp 4785 df-cnv 4786 df-rn 4787 df-dm 4788 df-res 4789 df-fun 4790 df-fn 4791 df-f 4792 df-fo 4794 df-fv 4796 df-2nd 4798 df-ov 5527 df-oprab 5529 df-mpt 5653 df-mpt2 5655 df-txp 5737 df-fix 5741 df-cup 5743 df-disj 5745 df-addcfn 5747 df-ins2 5751 df-ins3 5753 df-ins4 5757 df-si3 5759 df-lec 6100 df-ltc 6101 |
This theorem is referenced by: nnltp1c 6263 |
Copyright terms: Public domain | W3C validator |