New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > csucex | Unicode version |
Description: The function mapping to its cardinal successor exists. (Contributed by Scott Fenton, 30-Jul-2019.) |
Ref | Expression |
---|---|
csucex | 1c |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brcnv 4893 | . . . . . . . . . 10 | |
2 | vex 2863 | . . . . . . . . . . 11 | |
3 | 2 | br1st 4859 | . . . . . . . . . 10 |
4 | 1, 3 | bitri 240 | . . . . . . . . 9 |
5 | 4 | anbi1i 676 | . . . . . . . 8 AddC 1c AddC 1c |
6 | 19.41v 1901 | . . . . . . . 8 AddC 1c AddC 1c | |
7 | 5, 6 | bitr4i 243 | . . . . . . 7 AddC 1c AddC 1c |
8 | 7 | exbii 1582 | . . . . . 6 AddC 1c AddC 1c |
9 | excom 1741 | . . . . . . 7 AddC 1c AddC 1c | |
10 | vex 2863 | . . . . . . . . . 10 | |
11 | 2, 10 | opex 4589 | . . . . . . . . 9 |
12 | breq1 4643 | . . . . . . . . . 10 AddC 1c AddC 1c | |
13 | brres 4950 | . . . . . . . . . . 11 AddC 1c AddC 1c | |
14 | 2, 10 | braddcfn 5827 | . . . . . . . . . . . 12 AddC |
15 | opelxp 4812 | . . . . . . . . . . . . . 14 1c 1c | |
16 | 2, 15 | mpbiran 884 | . . . . . . . . . . . . 13 1c 1c |
17 | elsn 3749 | . . . . . . . . . . . . 13 1c 1c | |
18 | 16, 17 | bitri 240 | . . . . . . . . . . . 12 1c 1c |
19 | 14, 18 | anbi12ci 679 | . . . . . . . . . . 11 AddC 1c 1c |
20 | 13, 19 | bitri 240 | . . . . . . . . . 10 AddC 1c 1c |
21 | 12, 20 | syl6bb 252 | . . . . . . . . 9 AddC 1c 1c |
22 | 11, 21 | ceqsexv 2895 | . . . . . . . 8 AddC 1c 1c |
23 | 22 | exbii 1582 | . . . . . . 7 AddC 1c 1c |
24 | 9, 23 | bitri 240 | . . . . . 6 AddC 1c 1c |
25 | 8, 24 | bitri 240 | . . . . 5 AddC 1c 1c |
26 | 1cex 4143 | . . . . . 6 1c | |
27 | addceq2 4385 | . . . . . . 7 1c 1c | |
28 | 27 | eqeq1d 2361 | . . . . . 6 1c 1c |
29 | 26, 28 | ceqsexv 2895 | . . . . 5 1c 1c |
30 | 25, 29 | bitri 240 | . . . 4 AddC 1c 1c |
31 | opelco 4885 | . . . 4 AddC 1c AddC 1c | |
32 | mptv 5719 | . . . . . 6 1c 1c | |
33 | 32 | eleq2i 2417 | . . . . 5 1c 1c |
34 | vex 2863 | . . . . . 6 | |
35 | addceq1 4384 | . . . . . . 7 1c 1c | |
36 | 35 | eqeq2d 2364 | . . . . . 6 1c 1c |
37 | eqeq1 2359 | . . . . . . 7 1c 1c | |
38 | eqcom 2355 | . . . . . . 7 1c 1c | |
39 | 37, 38 | syl6bb 252 | . . . . . 6 1c 1c |
40 | 2, 34, 36, 39 | opelopab 4709 | . . . . 5 1c 1c |
41 | 33, 40 | bitri 240 | . . . 4 1c 1c |
42 | 30, 31, 41 | 3bitr4ri 269 | . . 3 1c AddC 1c |
43 | 42 | eqrelriv 4851 | . 2 1c AddC 1c |
44 | addcfnex 5825 | . . . 4 AddC | |
45 | vvex 4110 | . . . . 5 | |
46 | snex 4112 | . . . . 5 1c | |
47 | 45, 46 | xpex 5116 | . . . 4 1c |
48 | 44, 47 | resex 5118 | . . 3 AddC 1c |
49 | 1stex 4740 | . . . 4 | |
50 | 49 | cnvex 5103 | . . 3 |
51 | 48, 50 | coex 4751 | . 2 AddC 1c |
52 | 43, 51 | eqeltri 2423 | 1 1c |
Colors of variables: wff setvar class |
Syntax hints: wa 358 wex 1541 wceq 1642 wcel 1710 cvv 2860 csn 3738 1cc1c 4135 cplc 4376 cop 4562 copab 4623 class class class wbr 4640 c1st 4718 ccom 4722 cxp 4771 ccnv 4772 cres 4775 cmpt 5652 AddC caddcfn 5746 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-csb 3138 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-iun 3972 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-evenfin 4445 df-oddfin 4446 df-sfin 4447 df-spfin 4448 df-phi 4566 df-op 4567 df-proj1 4568 df-proj2 4569 df-opab 4624 df-br 4641 df-1st 4724 df-swap 4725 df-sset 4726 df-co 4727 df-ima 4728 df-si 4729 df-id 4768 df-xp 4785 df-cnv 4786 df-rn 4787 df-dm 4788 df-res 4789 df-fun 4790 df-fn 4791 df-f 4792 df-fo 4794 df-fv 4796 df-2nd 4798 df-ov 5527 df-oprab 5529 df-mpt 5653 df-mpt2 5655 df-txp 5737 df-cup 5743 df-disj 5745 df-addcfn 5747 df-ins2 5751 df-ins3 5753 df-ins4 5757 df-si3 5759 |
This theorem is referenced by: nnltp1clem1 6262 frecexg 6313 frecxp 6315 dmfrec 6317 fnfreclem2 6319 fnfreclem3 6320 frec0 6322 frecsuc 6323 |
Copyright terms: Public domain | W3C validator |