New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > nnsucelrlem2 | Unicode version |
Description: Lemma for nnsucelr 4429. Subtracting a non-element from a set adjoined with the non-element retrieves the original set. (Contributed by SF, 15-Jan-2015.) |
Ref | Expression |
---|---|
nnsucelrlem2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifsn 3840 | . . . . 5 | |
2 | elun 3221 | . . . . . . 7 | |
3 | elsn 3749 | . . . . . . . 8 | |
4 | 3 | orbi2i 505 | . . . . . . 7 |
5 | 2, 4 | bitri 240 | . . . . . 6 |
6 | df-ne 2519 | . . . . . 6 | |
7 | 5, 6 | anbi12i 678 | . . . . 5 |
8 | pm5.61 693 | . . . . 5 | |
9 | 1, 7, 8 | 3bitri 262 | . . . 4 |
10 | ancom 437 | . . . 4 | |
11 | 9, 10 | bitri 240 | . . 3 |
12 | eleq1 2413 | . . . . . . . 8 | |
13 | 12 | biimpcd 215 | . . . . . . 7 |
14 | 13 | con3d 125 | . . . . . 6 |
15 | 14 | com12 27 | . . . . 5 |
16 | 15 | pm4.71rd 616 | . . . 4 |
17 | 16 | bicomd 192 | . . 3 |
18 | 11, 17 | syl5bb 248 | . 2 |
19 | 18 | eqrdv 2351 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wn 3 wi 4 wo 357 wa 358 wceq 1642 wcel 1710 wne 2517 cdif 3207 cun 3208 csn 3738 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-sn 3742 |
This theorem is referenced by: nnsucelr 4429 enadj 6061 |
Copyright terms: Public domain | W3C validator |