| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > nnsucelrlem2 | Unicode version | ||
| Description: Lemma for nnsucelr 4429. Subtracting a non-element from a set adjoined with the non-element retrieves the original set. (Contributed by SF, 15-Jan-2015.) | 
| Ref | Expression | 
|---|---|
| nnsucelrlem2 | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eldifsn 3840 | 
. . . . 5
 | |
| 2 | elun 3221 | 
. . . . . . 7
 | |
| 3 | elsn 3749 | 
. . . . . . . 8
 | |
| 4 | 3 | orbi2i 505 | 
. . . . . . 7
 | 
| 5 | 2, 4 | bitri 240 | 
. . . . . 6
 | 
| 6 | df-ne 2519 | 
. . . . . 6
 | |
| 7 | 5, 6 | anbi12i 678 | 
. . . . 5
 | 
| 8 | pm5.61 693 | 
. . . . 5
 | |
| 9 | 1, 7, 8 | 3bitri 262 | 
. . . 4
 | 
| 10 | ancom 437 | 
. . . 4
 | |
| 11 | 9, 10 | bitri 240 | 
. . 3
 | 
| 12 | eleq1 2413 | 
. . . . . . . 8
 | |
| 13 | 12 | biimpcd 215 | 
. . . . . . 7
 | 
| 14 | 13 | con3d 125 | 
. . . . . 6
 | 
| 15 | 14 | com12 27 | 
. . . . 5
 | 
| 16 | 15 | pm4.71rd 616 | 
. . . 4
 | 
| 17 | 16 | bicomd 192 | 
. . 3
 | 
| 18 | 11, 17 | syl5bb 248 | 
. 2
 | 
| 19 | 18 | eqrdv 2351 | 
1
 | 
| Colors of variables: wff setvar class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 | 
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-sn 3742 | 
| This theorem is referenced by: nnsucelr 4429 enadj 6061 | 
| Copyright terms: Public domain | W3C validator |