| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > qsdisj | Unicode version | ||
| Description: Members of a quotient set do not overlap. (Contributed by Rodolfo Medina, 12-Oct-2010.) (Revised by Mario Carneiro, 11-Jul-2014.) | 
| Ref | Expression | 
|---|---|
| qsdisj.1 | 
 | 
| qsdisj.2 | 
 | 
| qsdisj.3 | 
 | 
| Ref | Expression | 
|---|---|
| qsdisj | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | qsdisj.2 | 
. 2
 | |
| 2 | eqid 2353 | 
. . 3
 | |
| 3 | eqeq1 2359 | 
. . . 4
 | |
| 4 | ineq1 3451 | 
. . . . 5
 | |
| 5 | 4 | eqeq1d 2361 | 
. . . 4
 | 
| 6 | 3, 5 | orbi12d 690 | 
. . 3
 | 
| 7 | qsdisj.3 | 
. . . . 5
 | |
| 8 | 7 | adantr 451 | 
. . . 4
 | 
| 9 | eqeq2 2362 | 
. . . . . 6
 | |
| 10 | ineq2 3452 | 
. . . . . . 7
 | |
| 11 | 10 | eqeq1d 2361 | 
. . . . . 6
 | 
| 12 | 9, 11 | orbi12d 690 | 
. . . . 5
 | 
| 13 | qsdisj.1 | 
. . . . . . 7
 | |
| 14 | 13 | ad2antrr 706 | 
. . . . . 6
 | 
| 15 | erdisj 5973 | 
. . . . . 6
 | |
| 16 | 14, 15 | syl 15 | 
. . . . 5
 | 
| 17 | 2, 12, 16 | ectocld 5992 | 
. . . 4
 | 
| 18 | 8, 17 | mpdan 649 | 
. . 3
 | 
| 19 | 2, 6, 18 | ectocld 5992 | 
. 2
 | 
| 20 | 1, 19 | mpdan 649 | 
1
 | 
| Colors of variables: wff setvar class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 | 
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-evenfin 4445 df-oddfin 4446 df-sfin 4447 df-spfin 4448 df-phi 4566 df-op 4567 df-proj1 4568 df-proj2 4569 df-opab 4624 df-br 4641 df-ima 4728 df-xp 4785 df-cnv 4786 df-rn 4787 df-dm 4788 df-res 4789 df-trans 5900 df-sym 5909 df-er 5910 df-ec 5948 df-qs 5952 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |