Theorem List for New Foundations Explorer - 5901-6000   *Has distinct variable
 group(s)
| Type | Label | Description | 
| Statement | 
|   | 
| Definition | df-ref 5901* | 
Define the set of all reflexive relationships over a base set.
       (Contributed by SF, 19-Feb-2015.)
 | 
  Ref               
          | 
|   | 
| Definition | df-antisym 5902* | 
Define the set of all antisymmetric relationships over a base set.
       (Contributed by SF, 19-Feb-2015.)
 | 
  Antisym               
                                   | 
|   | 
| Definition | df-partial 5903 | 
Define the set of all partial orderings over a base set.  (Contributed
       by SF, 19-Feb-2015.)
 | 
  Po      Ref   Trans     Antisym
   | 
|   | 
| Definition | df-connex 5904* | 
Define the set of all connected relationships over a base set.
       (Contributed by SF, 19-Feb-2015.)
 | 
  Connex               
                         | 
|   | 
| Definition | df-strict 5905 | 
Define the set of all strict orderings over a base set.  (Contributed by
       SF, 19-Feb-2015.)
 | 
  Or     Po   Connex   | 
|   | 
| Definition | df-found 5906* | 
Define the set of all founded relationships over a base set.
       (Contributed by SF, 19-Feb-2015.)
 | 
  Fr                      
                                          | 
|   | 
| Definition | df-we 5907 | 
Define the set of all well orderings over a base set.  (Contributed by
       SF, 19-Feb-2015.)
 | 
  We     Or   Fr   | 
|   | 
| Definition | df-ext 5908* | 
Define the set of all extensional relationships over a base set.
       (Contributed by SF, 19-Feb-2015.)
 | 
  Ext               
               
                           | 
|   | 
| Definition | df-sym 5909* | 
Define the set of all symmetric relationships over a base set.
       (Contributed by SF, 19-Feb-2015.)
 | 
  Sym               
                         | 
|   | 
| Definition | df-er 5910 | 
Define the set of all equivalence relationships over a base set.
       (Contributed by SF, 19-Feb-2015.)
 | 
  Er     Sym   Trans   | 
|   | 
| Theorem | transex 5911 | 
The class of all transitive relationships is a set.  (Contributed by SF,
       19-Feb-2015.)
 | 
  Trans     | 
|   | 
| Theorem | refex 5912 | 
The class of all reflexive relationships is a set.  (Contributed by SF,
       11-Mar-2015.)
 | 
  Ref     | 
|   | 
| Theorem | antisymex 5913 | 
The class of all antisymmetric relationships is a set.  (Contributed by
       SF, 11-Mar-2015.)
 | 
  Antisym     | 
|   | 
| Theorem | connexex 5914 | 
The class of all connected relationships is a set.  (Contributed by SF,
       11-Mar-2015.)
 | 
  Connex     | 
|   | 
| Theorem | foundex 5915 | 
The class of all founded relationships is a set.  (Contributed by SF,
       19-Feb-2015.)
 | 
  Fr     | 
|   | 
| Theorem | extex 5916 | 
The class of all extensional relationships is a set.  (Contributed by
       SF, 19-Feb-2015.)
 | 
  Ext     | 
|   | 
| Theorem | symex 5917 | 
The class of all symmetric relationships is a set.  (Contributed by SF,
       20-Feb-2015.)
 | 
  Sym     | 
|   | 
| Theorem | partialex 5918 | 
The class of all partial orderings is a set.  (Contributed by SF,
     11-Mar-2015.)
 | 
  Po     | 
|   | 
| Theorem | strictex 5919 | 
The class of all strict orderings is a set.  (Contributed by SF,
     19-Feb-2015.)
 | 
  Or     | 
|   | 
| Theorem | weex 5920 | 
The class of all well orderings is a set.  (Contributed by SF,
     19-Feb-2015.)
 | 
  We     | 
|   | 
| Theorem | erex 5921 | 
The class of all equivalence relationships is a set.  (Contributed by SF,
     20-Feb-2015.)
 | 
  Er     | 
|   | 
| Theorem | trd 5922 | 
Transitivity law in natural deduction form.  (Contributed by SF,
       20-Feb-2015.)
 | 
         Trans
                                                                                                                      | 
|   | 
| Theorem | frd 5923* | 
Founded relationship in natural deduction form.  (Contributed by SF,
       12-Mar-2015.)
 | 
         Fr                                                                                                          | 
|   | 
| Theorem | extd 5924* | 
Extensional relationship in natural deduction form.  (Contributed by SF,
       20-Feb-2015.)
 | 
         Ext                                                                                                    | 
|   | 
| Theorem | symd 5925 | 
Symmetric relationship in natural deduction form.  (Contributed by SF,
       20-Feb-2015.)
 | 
         Sym                                                                                | 
|   | 
| Theorem | trrd 5926* | 
Deduce transitivity from its properties.  (Contributed by SF,
       22-Feb-2015.)
 | 
                                                                       
                                      Trans
    | 
|   | 
| Theorem | refrd 5927* | 
Deduce reflexivity from its properties.  (Contributed by SF,
       12-Mar-2015.)
 | 
                                                                             Ref    | 
|   | 
| Theorem | refd 5928 | 
Natural deduction form of reflexivity.  (Contributed by SF,
       20-Mar-2015.)
 | 
         Ref                                          | 
|   | 
| Theorem | antird 5929* | 
Deduce antisymmetry from its properties.  (Contributed by SF,
       12-Mar-2015.)
 | 
                                                                                    
                   Antisym    | 
|   | 
| Theorem | antid 5930 | 
The antisymmetry property.  (Contributed by SF, 18-Mar-2015.)
 | 
         Antisym
                                                                                                    | 
|   | 
| Theorem | connexrd 5931* | 
Deduce connectivity from its properties.  (Contributed by SF,
       12-Mar-2015.)
 | 
                                                              
                               Connex
    | 
|   | 
| Theorem | connexd 5932 | 
The connectivity property.  (Contributed by SF, 18-Mar-2015.)
 | 
         Connex
                                                                      | 
|   | 
| Theorem | ersymtr 5933 | 
Equivalence relationship as symmetric, transitive relationship.
     (Contributed by SF, 22-Feb-2015.)
 | 
     Er        Sym       Trans     | 
|   | 
| Theorem | porta 5934 | 
Partial ordering as reflexive, transitive, antisymmetric relationship.
     (Contributed by SF, 12-Mar-2015.)
 | 
     Po        Ref       Trans       Antisym     | 
|   | 
| Theorem | sopc 5935 | 
Linear ordering as partial, connected relationship.  (Contributed by SF,
     12-Mar-2015.)
 | 
     Or        Po       Connex     | 
|   | 
| Theorem | frds 5936* | 
Substitution schema verson of frd 5923.  (Contributed by SF,
       19-Mar-2015.)
 | 
    
                                                                             Fr                                                      
                           | 
|   | 
| Theorem | pod 5937* | 
A reflexive, transitive, and anti-symmetric ordering is a partial
       ordering.  (Contributed by SF, 22-Feb-2015.)
 | 
                                                                                                   
                                                                         
                   Po    | 
|   | 
| Theorem | sod 5938* | 
A reflexive, transitive, antisymmetric, and connected relationship is a
       strict ordering.  (Contributed by SF, 12-Mar-2015.)
 | 
                                                                                                   
                                                                         
                                                               Or    | 
|   | 
| Theorem | weds 5939* | 
Any property that holds for some element of a well-ordered set   has
       an   minimal
element satisfying that property.  (Contributed by SF,
       20-Mar-2015.)
 | 
    
                                                                             We                                                      
                 | 
|   | 
| Theorem | po0 5940 | 
Anything partially orders the empty set.  (Contributed by SF,
       12-Mar-2015.)
 | 
                             Po    | 
|   | 
| Theorem | connex0 5941 | 
Anything is connected over the empty set.  (Contributed by SF,
       12-Mar-2015.)
 | 
                             Connex
    | 
|   | 
| Theorem | so0 5942 | 
Anything totally orders the empty set.  (Contributed by SF,
       12-Mar-2015.)
 | 
                             Or    | 
|   | 
| Theorem | iserd 5943* | 
A symmetric, transitive relationship is an equivalence relationship.
       (Contributed by SF, 22-Feb-2015.)
 | 
                                                                                                                   
                                      Er    | 
|   | 
| Theorem | ider 5944 | 
The identity relationship is an equivalence relationship over the
       universe.  (Contributed by SF, 22-Feb-2015.)
 | 
    Er   | 
|   | 
| Theorem | ssetpov 5945 | 
The subset relationship partially orders the universe.  (Contributed by
       SF, 12-Mar-2015.)
 | 
   S  Po   | 
|   | 
| 2.4.2  Equivalence relations and
 classes
 | 
|   | 
| Syntax | cec 5946 | 
Extend the definition of a class to include equivalence class.
 | 
    ![]](rbrack.gif)   | 
|   | 
| Syntax | cqs 5947 | 
Extend the definition of a class to include quotient set.
 | 
        | 
|   | 
| Definition | df-ec 5948 | 
Define the  -coset of
 .  Exercise 35 of [Enderton] p. 61.  This
     is called the equivalence class of   modulo   when   is
an
     equivalence relation.  In this case,   is a representative (member) of
     the equivalence class   ![]](rbrack.gif)  , which contains all sets that are
     equivalent to  . 
Definition of [Enderton] p. 57 uses the
notation
         (subscript)  , although we simply follow the brackets by
       since we don't
have subscripted expressions.  For an alternate
     definition, see dfec2 5949.  (Contributed by set.mm contributors,
     22-Feb-2015.)
 | 
    ![]](rbrack.gif)             | 
|   | 
| Theorem | dfec2 5949* | 
Alternate definition of  -coset of  .
Definition 34 of
       [Suppes] p. 81.  (Contributed by set.mm
contributors, 22-Feb-2015.)
 | 
    ![]](rbrack.gif)               | 
|   | 
| Theorem | ecexg 5950 | 
An equivalence class modulo a set is a set.  (Contributed by set.mm
     contributors, 24-Jul-1995.)
 | 
             ![]](rbrack.gif)        | 
|   | 
| Theorem | ecexr 5951 | 
A nonempty equivalence class implies the representative is a set.
     (Contributed by set.mm contributors, 9-Jul-2014.)
 | 
         ![]](rbrack.gif)            | 
|   | 
| Definition | df-qs 5952* | 
Define quotient set.  
is usually an equivalence relation.
       Definition of [Enderton] p. 58. 
(Contributed by set.mm contributors,
       22-Feb-2015.)
 | 
         
                
   ![]](rbrack.gif)    | 
|   | 
| Theorem | ersym 5953 | 
An equivalence relation is symmetric.  (Contributed by set.mm
       contributors, 22-Feb-2015.)
 | 
         Er                                                                                | 
|   | 
| Theorem | ersymb 5954 | 
An equivalence relation is symmetric.  (Contributed by set.mm
       contributors, 30-Jul-1995.)  (Revised by set.mm contributors,
       9-Jul-2014.)
 | 
         Er                                                                      | 
|   | 
| Theorem | ertr 5955 | 
An equivalence relation is transitive.  (Contributed by set.mm
       contributors, 4-Jun-1995.)  (Revised by set.mm contributors,
       9-Jul-2014.)
 | 
         Er                                                                                                  | 
|   | 
| Theorem | ertrd 5956 | 
A transitivity relation for equivalences.  (Contributed by set.mm
         contributors, 9-Jul-2014.)
 | 
         Er                                                                                                                      | 
|   | 
| Theorem | ertr2d 5957 | 
A transitivity relation for equivalences.  (Contributed by set.mm
         contributors, 9-Jul-2014.)
 | 
         Er                                                                                                                      | 
|   | 
| Theorem | ertr3d 5958 | 
A transitivity relation for equivalences.  (Contributed by set.mm
         contributors, 9-Jul-2014.)
 | 
         Er                                                                                                                      | 
|   | 
| Theorem | ertr4d 5959 | 
A transitivity relation for equivalences.  (Contributed by set.mm
         contributors, 9-Jul-2014.)
 | 
         Er                                                                                                                      | 
|   | 
| Theorem | erref 5960 | 
An equivalence relation is reflexive on its field.  Compare Theorem 3M
       of [Enderton] p. 56.  (Contributed by
set.mm contributors,
       6-May-2013.)
 | 
         Er                                                                | 
|   | 
| Theorem | eqerlem 5961* | 
Lemma for eqer 5962.  (Contributed by set.mm contributors,
       17-Mar-2008.)
 | 
                             
        
                               ![]_](_urbrack.gif)    
       ![]_](_urbrack.gif)    | 
|   | 
| Theorem | eqer 5962* | 
Equivalence relation involving equality of dependent classes     
       and     .  (Contributed by set.mm contributors, 17-Mar-2008.)
 | 
                             
        
                                  Er   | 
|   | 
| Theorem | eceq1 5963 | 
Equality theorem for equivalence class.  (Contributed by set.mm
     contributors, 23-Jul-1995.)
 | 
             ![]](rbrack.gif)       ![]](rbrack.gif)    | 
|   | 
| Theorem | eceq2 5964 | 
Equality theorem for equivalence class.  (Contributed by set.mm
     contributors, 23-Jul-1995.)
 | 
             ![]](rbrack.gif)       ![]](rbrack.gif)    | 
|   | 
| Theorem | elec 5965 | 
Membership in an equivalence class.  Theorem 72 of [Suppes] p. 82.
     (Contributed by set.mm contributors, 9-Jul-2014.)
 | 
         ![]](rbrack.gif)          | 
|   | 
| Theorem | erdmrn 5966 | 
The range and domain of an equivalence relation are equal.  (Contributed
       by Rodolfo Medina, 11-Oct-2010.)
 | 
     Er                | 
|   | 
| Theorem | ecss 5967 | 
An equivalence class is a subset of the domain.  (Contributed by set.mm
       contributors, 6-Aug-1995.)  (Revised by set.mm contributors,
       9-Jul-2014.)
 | 
         Er                                         ![]](rbrack.gif)        | 
|   | 
| Theorem | ecdmn0 5968 | 
A representative of a nonempty equivalence class belongs to the domain
       of the equivalence relation.  (Contributed by set.mm contributors,
       15-Feb-1996.)  (Revised by set.mm contributors, 9-Jul-2014.)
 | 
               ![]](rbrack.gif)        | 
|   | 
| Theorem | erth 5969 | 
Basic property of equivalence relations.  Theorem 73 of [Suppes] p. 82.
       (Contributed by set.mm contributors, 23-Jul-1995.)  (Revised by Mario
       Carneiro, 9-Jul-2014.)
 | 
         Er                                                                                        ![]](rbrack.gif)  
     ![]](rbrack.gif)     | 
|   | 
| Theorem | erth2 5970 | 
Basic property of equivalence relations.  Compare Theorem 73 of [Suppes]
       p. 82.  Assumes membership of the second argument in the domain.
       (Contributed by set.mm contributors, 30-Jul-1995.)  (Revised by set.mm
       contributors, 9-Jul-2014.)
 | 
         Er                                                                                        ![]](rbrack.gif)  
     ![]](rbrack.gif)     | 
|   | 
| Theorem | erthi 5971 | 
Basic property of equivalence relations.  Part of Lemma 3N of [Enderton]
       p. 57.  (Contributed by set.mm contributors, 30-Jul-1995.)  (Revised by
       set.mm contributors, 9-Jul-2014.)
 | 
         Er                                     ![]](rbrack.gif)  
     ![]](rbrack.gif)    | 
|   | 
| Theorem | ereldm 5972 | 
Equality of equivalence classes implies equivalence of domain
       membership.  (Contributed by set.mm contributors, 28-Jan-1996.)
       (Revised by set.mm contributors, 9-Jul-2014.)
 | 
         Er                                         ![]](rbrack.gif)       ![]](rbrack.gif)                                                                          | 
|   | 
| Theorem | erdisj 5973 | 
Equivalence classes do not overlap.  In other words, two equivalence
       classes are either equal or disjoint.  Theorem 74 of [Suppes] p. 83.
       (Contributed by set.mm contributors, 15-Jun-2004.)  (Revised by Mario
       Carneiro, 9-Jul-2014.)
 | 
     Er        ![]](rbrack.gif)       ![]](rbrack.gif)        ![]](rbrack.gif)       ![]](rbrack.gif)          | 
|   | 
| Theorem | ecidsn 5974 | 
An equivalence class modulo the identity relation is a singleton.
     (Contributed by set.mm contributors, 24-Oct-2004.)
 | 
              | 
|   | 
| Theorem | qseq1 5975 | 
Equality theorem for quotient set.  (Contributed by set.mm contributors,
       23-Jul-1995.)
 | 
                  
        | 
|   | 
| Theorem | qseq2 5976 | 
Equality theorem for quotient set.  (Contributed by set.mm contributors,
       23-Jul-1995.)
 | 
                  
        | 
|   | 
| Theorem | elqsg 5977* | 
Closed form of elqs 5978.  (Contributed by Rodolfo Medina,
       12-Oct-2010.)
 | 
                                     ![]](rbrack.gif)     | 
|   | 
| Theorem | elqs 5978* | 
Membership in a quotient set.  (Contributed by set.mm contributors,
       23-Jul-1995.)  (Revised by set.mm contributors, 12-Nov-2008.)
 | 
                                          ![]](rbrack.gif)    | 
|   | 
| Theorem | elqsi 5979* | 
Membership in a quotient set.  (Contributed by set.mm contributors,
       23-Jul-1995.)
 | 
                 
        
   ![]](rbrack.gif)    | 
|   | 
| Theorem | ecelqsg 5980 | 
Membership of an equivalence class in a quotient set.  (Contributed by
       Jeff Madsen, 10-Jun-2010.)
 | 
                       ![]](rbrack.gif)            | 
|   | 
| Theorem | ecelqsi 5981 | 
Membership of an equivalence class in a quotient set.  (Contributed by
       set.mm contributors, 25-Jul-1995.)  (Revised by set.mm contributors,
       9-Jul-2014.)
 | 
                           ![]](rbrack.gif)            | 
|   | 
| Theorem | ecopqsi 5982 | 
"Closure" law for equivalence class of ordered pairs.  (Contributed
by
       set.mm contributors, 25-Mar-1996.)
 | 
                                                                  ![]](rbrack.gif)        | 
|   | 
| Theorem | qsexg 5983 | 
A quotient set exists.  (Contributed by FL, 19-May-2007.)
 | 
                          
      | 
|   | 
| Theorem | qsex 5984 | 
A quotient set exists.  (Contributed by set.mm contributors,
       14-Aug-1995.)
 | 
                                        | 
|   | 
| Theorem | uniqs 5985 | 
The union of a quotient set.  (Contributed by set.mm contributors,
       9-Dec-2008.)
 | 
                 
          | 
|   | 
| Theorem | uniqs2 5986 | 
The union of a quotient set.  (Contributed by set.mm contributors,
       11-Jul-2014.)
 | 
         Er                                                                       | 
|   | 
| Theorem | qsss 5987 | 
A quotient set is a set of subsets of the base set.  (Contributed by
       Mario Carneiro, 9-Jul-2014.)
 | 
         Er                                                                       | 
|   | 
| Theorem | snec 5988 | 
The singleton of an equivalence class.  (Contributed by set.mm
       contributors, 29-Jan-1999.)  (Revised by set.mm contributors,
       9-Jul-2014.)
 | 
                   ![]](rbrack.gif)     
         | 
|   | 
| Theorem | ecqs 5989 | 
Equivalence class in terms of quotient set.  (Contributed by set.mm
       contributors, 29-Jan-1999.)  (Revised by set.mm contributors,
       15-Jan-2009.)
 | 
                  ![]](rbrack.gif)              | 
|   | 
| Theorem | ecid 5990 | 
A set is equal to its converse epsilon coset.  (Note: converse epsilon
       is not an equivalence relation.)  (Contributed by set.mm contributors,
       13-Aug-1995.)  (Revised by set.mm contributors, 9-Jul-2014.)
 | 
                  ![]](rbrack.gif)         | 
|   | 
| Theorem | qsid 5991 | 
A set is equal to its quotient set mod converse epsilon.  (Note:
       converse epsilon is not an equivalence relation.)  (Contributed by
       set.mm contributors, 13-Aug-1995.)  (Revised by set.mm contributors,
       9-Jul-2014.)
 | 
          
     | 
|   | 
| Theorem | ectocld 5992* | 
Implicit substitution of class for equivalence class.  (Contributed by
         set.mm contributors, 9-Jul-2014.)
 | 
     
                  ![]](rbrack.gif)    
                                  
                          
      | 
|   | 
| Theorem | ectocl 5993* | 
Implicit substitution of class for equivalence class.  (Contributed by
       set.mm contributors, 23-Jul-1995.)  (Revised by set.mm contributors,
       9-Jul-2014.)
 | 
     
                  ![]](rbrack.gif)    
                                                      | 
|   | 
| Theorem | elqsn0 5994 | 
A quotient set doesn't contain the empty set.  (Contributed by set.mm
       contributors, 24-Aug-1995.)  (Revised by set.mm contributors,
       21-Mar-2007.)
 | 
                                  | 
|   | 
| Theorem | ecelqsdm 5995 | 
Membership of an equivalence class in a quotient set.  (Contributed by
     set.mm contributors, 30-Jul-1995.)  (Revised by set.mm contributors,
     21-Mar-2007.)
 | 
                ![]](rbrack.gif)  
                   | 
|   | 
| Theorem | qsdisj 5996 | 
Members of a quotient set do not overlap.  (Contributed by Rodolfo
       Medina, 12-Oct-2010.)  (Revised by Mario Carneiro, 11-Jul-2014.)
 | 
         Er                                                                     
       
            | 
|   | 
| Theorem | ecoptocl 5997* | 
Implicit substitution of class for equivalence class of ordered pair.
       (Contributed by set.mm contributors, 23-Jul-1995.)
 | 
     
                             ![]](rbrack.gif)                                                                    | 
|   | 
| Theorem | 2ecoptocl 5998* | 
Implicit substitution of classes for equivalence classes of ordered
       pairs.  (Contributed by set.mm contributors, 23-Jul-1995.)
 | 
     
                             ![]](rbrack.gif)                                  ![]](rbrack.gif)                                                                                                  | 
|   | 
| Theorem | 3ecoptocl 5999* | 
Implicit substitution of classes for equivalence classes of ordered
       pairs.  (Contributed by set.mm contributors, 9-Aug-1995.)
 | 
     
                             ![]](rbrack.gif)                                  ![]](rbrack.gif)                                  ![]](rbrack.gif)                                                                                                                            | 
|   | 
| 2.4.3  The mapping operation
 | 
|   | 
| Syntax | cmap 6000 | 
Extend the definition of a class to include the mapping operation.  (Read
     for      , "the set of all functions that
map from   to
      .)
 | 
    |