New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > qsdisj | GIF version |
Description: Members of a quotient set do not overlap. (Contributed by Rodolfo Medina, 12-Oct-2010.) (Revised by Mario Carneiro, 11-Jul-2014.) |
Ref | Expression |
---|---|
qsdisj.1 | ⊢ (φ → R Er V) |
qsdisj.2 | ⊢ (φ → B ∈ (A / R)) |
qsdisj.3 | ⊢ (φ → C ∈ (A / R)) |
Ref | Expression |
---|---|
qsdisj | ⊢ (φ → (B = C ∨ (B ∩ C) = ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qsdisj.2 | . 2 ⊢ (φ → B ∈ (A / R)) | |
2 | eqid 2353 | . . 3 ⊢ (A / R) = (A / R) | |
3 | eqeq1 2359 | . . . 4 ⊢ ([x]R = B → ([x]R = C ↔ B = C)) | |
4 | ineq1 3450 | . . . . 5 ⊢ ([x]R = B → ([x]R ∩ C) = (B ∩ C)) | |
5 | 4 | eqeq1d 2361 | . . . 4 ⊢ ([x]R = B → (([x]R ∩ C) = ∅ ↔ (B ∩ C) = ∅)) |
6 | 3, 5 | orbi12d 690 | . . 3 ⊢ ([x]R = B → (([x]R = C ∨ ([x]R ∩ C) = ∅) ↔ (B = C ∨ (B ∩ C) = ∅))) |
7 | qsdisj.3 | . . . . 5 ⊢ (φ → C ∈ (A / R)) | |
8 | 7 | adantr 451 | . . . 4 ⊢ ((φ ∧ x ∈ A) → C ∈ (A / R)) |
9 | eqeq2 2362 | . . . . . 6 ⊢ ([y]R = C → ([x]R = [y]R ↔ [x]R = C)) | |
10 | ineq2 3451 | . . . . . . 7 ⊢ ([y]R = C → ([x]R ∩ [y]R) = ([x]R ∩ C)) | |
11 | 10 | eqeq1d 2361 | . . . . . 6 ⊢ ([y]R = C → (([x]R ∩ [y]R) = ∅ ↔ ([x]R ∩ C) = ∅)) |
12 | 9, 11 | orbi12d 690 | . . . . 5 ⊢ ([y]R = C → (([x]R = [y]R ∨ ([x]R ∩ [y]R) = ∅) ↔ ([x]R = C ∨ ([x]R ∩ C) = ∅))) |
13 | qsdisj.1 | . . . . . . 7 ⊢ (φ → R Er V) | |
14 | 13 | ad2antrr 706 | . . . . . 6 ⊢ (((φ ∧ x ∈ A) ∧ y ∈ A) → R Er V) |
15 | erdisj 5972 | . . . . . 6 ⊢ (R Er V → ([x]R = [y]R ∨ ([x]R ∩ [y]R) = ∅)) | |
16 | 14, 15 | syl 15 | . . . . 5 ⊢ (((φ ∧ x ∈ A) ∧ y ∈ A) → ([x]R = [y]R ∨ ([x]R ∩ [y]R) = ∅)) |
17 | 2, 12, 16 | ectocld 5991 | . . . 4 ⊢ (((φ ∧ x ∈ A) ∧ C ∈ (A / R)) → ([x]R = C ∨ ([x]R ∩ C) = ∅)) |
18 | 8, 17 | mpdan 649 | . . 3 ⊢ ((φ ∧ x ∈ A) → ([x]R = C ∨ ([x]R ∩ C) = ∅)) |
19 | 2, 6, 18 | ectocld 5991 | . 2 ⊢ ((φ ∧ B ∈ (A / R)) → (B = C ∨ (B ∩ C) = ∅)) |
20 | 1, 19 | mpdan 649 | 1 ⊢ (φ → (B = C ∨ (B ∩ C) = ∅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 357 ∧ wa 358 = wceq 1642 ∈ wcel 1710 Vcvv 2859 ∩ cin 3208 ∅c0 3550 class class class wbr 4639 Er cer 5898 [cec 5945 / cqs 5946 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4078 ax-xp 4079 ax-cnv 4080 ax-1c 4081 ax-sset 4082 ax-si 4083 ax-ins2 4084 ax-ins3 4085 ax-typlower 4086 ax-sn 4087 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-ne 2518 df-ral 2619 df-rex 2620 df-reu 2621 df-rmo 2622 df-rab 2623 df-v 2861 df-sbc 3047 df-nin 3211 df-compl 3212 df-in 3213 df-un 3214 df-dif 3215 df-symdif 3216 df-ss 3259 df-pss 3261 df-nul 3551 df-if 3663 df-pw 3724 df-sn 3741 df-pr 3742 df-uni 3892 df-int 3927 df-opk 4058 df-1c 4136 df-pw1 4137 df-uni1 4138 df-xpk 4185 df-cnvk 4186 df-ins2k 4187 df-ins3k 4188 df-imak 4189 df-cok 4190 df-p6 4191 df-sik 4192 df-ssetk 4193 df-imagek 4194 df-idk 4195 df-iota 4339 df-0c 4377 df-addc 4378 df-nnc 4379 df-fin 4380 df-lefin 4440 df-ltfin 4441 df-ncfin 4442 df-tfin 4443 df-evenfin 4444 df-oddfin 4445 df-sfin 4446 df-spfin 4447 df-phi 4565 df-op 4566 df-proj1 4567 df-proj2 4568 df-opab 4623 df-br 4640 df-ima 4727 df-xp 4784 df-cnv 4785 df-rn 4786 df-dm 4787 df-res 4788 df-trans 5899 df-sym 5908 df-er 5909 df-ec 5947 df-qs 5951 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |