NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  rexsn GIF version

Theorem rexsn 3769
Description: Restricted existential quantification over a singleton. (Contributed by Jeff Madsen, 5-Jan-2011.)
Hypotheses
Ref Expression
ralsn.1 A V
ralsn.2 (x = A → (φψ))
Assertion
Ref Expression
rexsn (x {A}φψ)
Distinct variable groups:   x,A   ψ,x
Allowed substitution hint:   φ(x)

Proof of Theorem rexsn
StepHypRef Expression
1 ralsn.1 . 2 A V
2 ralsn.2 . . 3 (x = A → (φψ))
32rexsng 3767 . 2 (A V → (x {A}φψ))
41, 3ax-mp 5 1 (x {A}φψ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   = wceq 1642   wcel 1710  wrex 2616  Vcvv 2860  {csn 3738
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-rex 2621  df-v 2862  df-sbc 3048  df-sn 3742
This theorem is referenced by:  pw1sn  4166  elimaksn  4284  setswith  4322  addcid1  4406  ltfintrilem1  4466  nnadjoin  4521  tfinnn  4535  elsnres  4997  xpnedisj  5514  snec  5988  lec0cg  6199  addccan2nclem1  6264
  Copyright terms: Public domain W3C validator