| Step | Hyp | Ref
| Expression |
| 1 | | sbcco 3069 |
. 2
⊢ ([̣A / z]̣[̣z
/ x]̣∀y ∈ B φ ↔ [̣A / x]̣∀y ∈ B φ) |
| 2 | | simpl 443 |
. . 3
⊢ ((A ∈ V ∧
ℲyA) → A
∈ V) |
| 3 | | sbsbc 3051 |
. . . . 5
⊢ ([z / x]∀y ∈ B φ ↔ [̣z / x]̣∀y ∈ B φ) |
| 4 | | nfcv 2490 |
. . . . . . 7
⊢
ℲxB |
| 5 | | nfs1v 2106 |
. . . . . . 7
⊢ Ⅎx[z / x]φ |
| 6 | 4, 5 | nfral 2668 |
. . . . . 6
⊢ Ⅎx∀y ∈ B [z / x]φ |
| 7 | | sbequ12 1919 |
. . . . . . 7
⊢ (x = z →
(φ ↔ [z / x]φ)) |
| 8 | 7 | ralbidv 2635 |
. . . . . 6
⊢ (x = z →
(∀y
∈ B φ ↔ ∀y ∈ B [z / x]φ)) |
| 9 | 6, 8 | sbie 2038 |
. . . . 5
⊢ ([z / x]∀y ∈ B φ ↔ ∀y ∈ B [z / x]φ) |
| 10 | 3, 9 | bitr3i 242 |
. . . 4
⊢ ([̣z / x]̣∀y ∈ B φ ↔ ∀y ∈ B [z / x]φ) |
| 11 | | nfnfc1 2493 |
. . . . . . 7
⊢ ℲyℲyA |
| 12 | | nfcvd 2491 |
. . . . . . . 8
⊢
(ℲyA → Ⅎyz) |
| 13 | | id 19 |
. . . . . . . 8
⊢
(ℲyA → ℲyA) |
| 14 | 12, 13 | nfeqd 2504 |
. . . . . . 7
⊢
(ℲyA → Ⅎy z = A) |
| 15 | 11, 14 | nfan1 1881 |
. . . . . 6
⊢ Ⅎy(ℲyA ∧ z = A) |
| 16 | | dfsbcq2 3050 |
. . . . . . 7
⊢ (z = A →
([z / x]φ ↔
[̣A / x]̣φ)) |
| 17 | 16 | adantl 452 |
. . . . . 6
⊢
((ℲyA ∧ z = A) →
([z / x]φ ↔
[̣A / x]̣φ)) |
| 18 | 15, 17 | ralbid 2633 |
. . . . 5
⊢
((ℲyA ∧ z = A) →
(∀y
∈ B
[z / x]φ ↔
∀y
∈ B
[̣A / x]̣φ)) |
| 19 | 18 | adantll 694 |
. . . 4
⊢ (((A ∈ V ∧
ℲyA) ∧ z = A) →
(∀y
∈ B
[z / x]φ ↔
∀y
∈ B
[̣A / x]̣φ)) |
| 20 | 10, 19 | syl5bb 248 |
. . 3
⊢ (((A ∈ V ∧
ℲyA) ∧ z = A) →
([̣z / x]̣∀y ∈ B φ ↔ ∀y ∈ B
[̣A / x]̣φ)) |
| 21 | 2, 20 | sbcied 3083 |
. 2
⊢ ((A ∈ V ∧
ℲyA) → ([̣A / z]̣[̣z
/ x]̣∀y ∈ B φ ↔ ∀y ∈ B
[̣A / x]̣φ)) |
| 22 | 1, 21 | syl5bbr 250 |
1
⊢ ((A ∈ V ∧
ℲyA) → ([̣A / x]̣∀y ∈ B φ ↔ ∀y ∈ B
[̣A / x]̣φ)) |