NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  sbcralt GIF version

Theorem sbcralt 3119
Description: Interchange class substitution and restricted quantifier. (Contributed by NM, 1-Mar-2008.) (Revised by David Abernethy, 22-Feb-2010.)
Assertion
Ref Expression
sbcralt ((A V yA) → ([̣A / xy B φy BA / xφ))
Distinct variable groups:   x,y   x,B
Allowed substitution hints:   φ(x,y)   A(x,y)   B(y)   V(x,y)

Proof of Theorem sbcralt
Dummy variable z is distinct from all other variables.
StepHypRef Expression
1 sbcco 3069 . 2 ([̣A / z]̣[̣z / xy B φ ↔ [̣A / xy B φ)
2 simpl 443 . . 3 ((A V yA) → A V)
3 sbsbc 3051 . . . . 5 ([z / x]y B φ ↔ [̣z / xy B φ)
4 nfcv 2490 . . . . . . 7 xB
5 nfs1v 2106 . . . . . . 7 x[z / x]φ
64, 5nfral 2668 . . . . . 6 xy B [z / x]φ
7 sbequ12 1919 . . . . . . 7 (x = z → (φ ↔ [z / x]φ))
87ralbidv 2635 . . . . . 6 (x = z → (y B φy B [z / x]φ))
96, 8sbie 2038 . . . . 5 ([z / x]y B φy B [z / x]φ)
103, 9bitr3i 242 . . . 4 ([̣z / xy B φy B [z / x]φ)
11 nfnfc1 2493 . . . . . . 7 yyA
12 nfcvd 2491 . . . . . . . 8 (yAyz)
13 id 19 . . . . . . . 8 (yAyA)
1412, 13nfeqd 2504 . . . . . . 7 (yA → Ⅎy z = A)
1511, 14nfan1 1881 . . . . . 6 y(yA z = A)
16 dfsbcq2 3050 . . . . . . 7 (z = A → ([z / x]φ ↔ [̣A / xφ))
1716adantl 452 . . . . . 6 ((yA z = A) → ([z / x]φ ↔ [̣A / xφ))
1815, 17ralbid 2633 . . . . 5 ((yA z = A) → (y B [z / x]φy BA / xφ))
1918adantll 694 . . . 4 (((A V yA) z = A) → (y B [z / x]φy BA / xφ))
2010, 19syl5bb 248 . . 3 (((A V yA) z = A) → ([̣z / xy B φy BA / xφ))
212, 20sbcied 3083 . 2 ((A V yA) → ([̣A / z]̣[̣z / xy B φy BA / xφ))
221, 21syl5bbr 250 1 ((A V yA) → ([̣A / xy B φy BA / xφ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   wa 358   = wceq 1642  [wsb 1648   wcel 1710  wnfc 2477  wral 2615  wsbc 3047
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ral 2620  df-v 2862  df-sbc 3048
This theorem is referenced by:  sbcrext  3120
  Copyright terms: Public domain W3C validator