![]() |
New Foundations Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > NFE Home > Th. List > snssi | GIF version |
Description: The singleton of an element of a class is a subset of the class. (Contributed by NM, 6-Jun-1994.) |
Ref | Expression |
---|---|
snssi | ⊢ (A ∈ B → {A} ⊆ B) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snssg 3844 | . 2 ⊢ (A ∈ B → (A ∈ B ↔ {A} ⊆ B)) | |
2 | 1 | ibi 232 | 1 ⊢ (A ∈ B → {A} ⊆ B) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 1710 ⊆ wss 3257 {csn 3737 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-v 2861 df-nin 3211 df-compl 3212 df-in 3213 df-ss 3259 df-sn 3741 |
This theorem is referenced by: difsnid 3854 pwpw0 3855 sssn 3864 ssunsn2 3865 pwsnALT 3882 snelpwi 4116 dfiota4 4372 nnsucelrlem4 4427 ssfin 4470 fvimacnvi 5402 fsn2 5434 map0 6025 mapsn 6026 spacssnc 6284 spacind 6287 nchoicelem13 6301 |
Copyright terms: Public domain | W3C validator |