NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  spacind Unicode version

Theorem spacind 6288
Description: Inductive law for the special set generator. (Contributed by SF, 13-Mar-2015.)
Assertion
Ref Expression
spacind NC Spac c 0c NC 2cc Spac
Distinct variable groups:   ,   ,
Allowed substitution hint:   ()

Proof of Theorem spacind
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 2868 . 2
2 spacval 6283 . . . . 5 NC Spac Clos1 NC NC 2cc
32adantr 451 . . . 4 NC Spac Clos1 NC NC 2cc
43adantr 451 . . 3 NC Spac c 0c NC 2cc Spac Clos1 NC NC 2cc
5 simplr 731 . . . 4 NC Spac c 0c NC 2cc
6 snssi 3853 . . . . . 6
76adantr 451 . . . . 5 Spac c 0c NC 2cc
87adantl 452 . . . 4 NC Spac c 0c NC 2cc
9 spacssnc 6285 . . . . . . . . . . 11 NC Spac NC
109sseld 3273 . . . . . . . . . 10 NC Spac NC
11 2nc 6169 . . . . . . . . . . . . . . . . . . . 20 2c NC
12 ceclr 6188 . . . . . . . . . . . . . . . . . . . . 21 2c NC NC 2cc NC 2cc 0c NC c 0c NC
1312simprd 449 . . . . . . . . . . . . . . . . . . . 20 2c NC NC 2cc NC c 0c NC
1411, 13mp3an1 1264 . . . . . . . . . . . . . . . . . . 19 NC 2cc NC c 0c NC
1514ex 423 . . . . . . . . . . . . . . . . . 18 NC 2cc NC c 0c NC
1615imim1d 69 . . . . . . . . . . . . . . . . 17 NC c 0c NC 2cc 2cc NC 2cc
1716a1dd 42 . . . . . . . . . . . . . . . 16 NC c 0c NC 2cc NC 2cc NC 2cc
1817adantl 452 . . . . . . . . . . . . . . 15 NC NC c 0c NC 2cc NC 2cc NC 2cc
19 3anass 938 . . . . . . . . . . . . . . . . . . 19 NC NC 2cc NC NC 2cc
2019imbi1i 315 . . . . . . . . . . . . . . . . . 18 NC NC 2cc NC NC 2cc
21 impexp 433 . . . . . . . . . . . . . . . . . 18 NC NC 2cc NC NC 2cc
2220, 21bitri 240 . . . . . . . . . . . . . . . . 17 NC NC 2cc NC NC 2cc
2322albii 1566 . . . . . . . . . . . . . . . 16 NC NC 2cc NC NC 2cc
24 19.21v 1890 . . . . . . . . . . . . . . . . 17 NC NC 2cc NC NC 2cc
25 impexp 433 . . . . . . . . . . . . . . . . . . . . 21 NC 2cc NC 2cc
26 bi2.04 350 . . . . . . . . . . . . . . . . . . . . 21 NC 2cc 2cc NC
2725, 26bitri 240 . . . . . . . . . . . . . . . . . . . 20 NC 2cc 2cc NC
2827albii 1566 . . . . . . . . . . . . . . . . . . 19 NC 2cc 2cc NC
29 ovex 5552 . . . . . . . . . . . . . . . . . . . 20 2cc
30 eleq1 2413 . . . . . . . . . . . . . . . . . . . . 21 2cc NC 2cc NC
31 eleq1 2413 . . . . . . . . . . . . . . . . . . . . 21 2cc 2cc
3230, 31imbi12d 311 . . . . . . . . . . . . . . . . . . . 20 2cc NC 2cc NC 2cc
3329, 32ceqsalv 2886 . . . . . . . . . . . . . . . . . . 19 2cc NC 2cc NC 2cc
3428, 33bitri 240 . . . . . . . . . . . . . . . . . 18 NC 2cc 2cc NC 2cc
3534imbi2i 303 . . . . . . . . . . . . . . . . 17 NC NC 2cc NC 2cc NC 2cc
3624, 35bitri 240 . . . . . . . . . . . . . . . 16 NC NC 2cc NC 2cc NC 2cc
3723, 36bitri 240 . . . . . . . . . . . . . . 15 NC NC 2cc NC 2cc NC 2cc
3818, 37syl6ibr 218 . . . . . . . . . . . . . 14 NC NC c 0c NC 2cc NC NC 2cc
39 vex 2863 . . . . . . . . . . . . . . . . 17
40 vex 2863 . . . . . . . . . . . . . . . . 17
41 eleq1 2413 . . . . . . . . . . . . . . . . . 18 NC NC
42 oveq2 5532 . . . . . . . . . . . . . . . . . . 19 2cc 2cc
4342eqeq2d 2364 . . . . . . . . . . . . . . . . . 18 2cc 2cc
4441, 433anbi13d 1254 . . . . . . . . . . . . . . . . 17 NC NC 2cc NC NC 2cc
45 eleq1 2413 . . . . . . . . . . . . . . . . . 18 NC NC
46 eqeq1 2359 . . . . . . . . . . . . . . . . . 18 2cc 2cc
4745, 463anbi23d 1255 . . . . . . . . . . . . . . . . 17 NC NC 2cc NC NC 2cc
48 eqid 2353 . . . . . . . . . . . . . . . . 17 NC NC 2cc NC NC 2cc
4939, 40, 44, 47, 48brab 4710 . . . . . . . . . . . . . . . 16 NC NC 2cc NC NC 2cc
5049imbi1i 315 . . . . . . . . . . . . . . 15 NC NC 2cc NC NC 2cc
5150albii 1566 . . . . . . . . . . . . . 14 NC NC 2cc NC NC 2cc
5238, 51syl6ibr 218 . . . . . . . . . . . . 13 NC NC c 0c NC 2cc NC NC 2cc
5352imim2d 48 . . . . . . . . . . . 12 NC NC c 0c NC 2cc NC NC 2cc
54 impexp 433 . . . . . . . . . . . 12 c 0c NC 2cc c 0c NC 2cc
55 impexp 433 . . . . . . . . . . . . . 14 NC NC 2cc NC NC 2cc
5655albii 1566 . . . . . . . . . . . . 13 NC NC 2cc NC NC 2cc
57 19.21v 1890 . . . . . . . . . . . . 13 NC NC 2cc NC NC 2cc
5856, 57bitri 240 . . . . . . . . . . . 12 NC NC 2cc NC NC 2cc
5953, 54, 583imtr4g 261 . . . . . . . . . . 11 NC NC c 0c NC 2cc NC NC 2cc
6059ex 423 . . . . . . . . . 10 NC NC c 0c NC 2cc NC NC 2cc
6110, 60syld 40 . . . . . . . . 9 NC Spac c 0c NC 2cc NC NC 2cc
6261imp 418 . . . . . . . 8 NC Spac c 0c NC 2cc NC NC 2cc
6362ralimdva 2693 . . . . . . 7 NC Spac c 0c NC 2cc Spac NC NC 2cc
64 raleq 2808 . . . . . . . 8 Spac Clos1 NC NC 2cc Spac NC NC 2cc Clos1 NC NC 2cc NC NC 2cc
652, 64syl 15 . . . . . . 7 NC Spac NC NC 2cc Clos1 NC NC 2cc NC NC 2cc
6663, 65sylibd 205 . . . . . 6 NC Spac c 0c NC 2cc Clos1 NC NC 2cc NC NC 2cc
6766imp 418 . . . . 5 NC Spac c 0c NC 2cc Clos1 NC NC 2cc NC NC 2cc
6867ad2ant2rl 729 . . . 4 NC Spac c 0c NC 2cc Clos1 NC NC 2cc NC NC 2cc
69 snex 4112 . . . . 5
70 spacvallem1 6282 . . . . 5 NC NC 2cc
71 eqid 2353 . . . . 5 Clos1 NC NC 2cc Clos1 NC NC 2cc
7269, 70, 71clos1induct 5881 . . . 4 Clos1 NC NC 2cc NC NC 2cc Clos1 NC NC 2cc
735, 8, 68, 72syl3anc 1182 . . 3 NC Spac c 0c NC 2cc Clos1 NC NC 2cc
744, 73eqsstrd 3306 . 2 NC Spac c 0c NC 2cc Spac
751, 74sylanl2 632 1 NC Spac c 0c NC 2cc Spac
Colors of variables: wff setvar class
Syntax hints:   wi 4   wb 176   wa 358   w3a 934  wal 1540   wceq 1642   wcel 1710  wral 2615  cvv 2860   wss 3258  csn 3738  0cc0c 4375  copab 4623   class class class wbr 4640  cfv 4782  (class class class)co 5526   Clos1 cclos1 5873   NC cncs 6089  2cc2c 6095   ↑c cce 6097   Spac cspac 6274
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-reu 2622  df-rmo 2623  df-rab 2624  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-pss 3262  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-iota 4340  df-0c 4378  df-addc 4379  df-nnc 4380  df-fin 4381  df-lefin 4441  df-ltfin 4442  df-ncfin 4443  df-tfin 4444  df-evenfin 4445  df-oddfin 4446  df-sfin 4447  df-spfin 4448  df-phi 4566  df-op 4567  df-proj1 4568  df-proj2 4569  df-opab 4624  df-br 4641  df-1st 4724  df-swap 4725  df-sset 4726  df-co 4727  df-ima 4728  df-si 4729  df-id 4768  df-xp 4785  df-cnv 4786  df-rn 4787  df-dm 4788  df-res 4789  df-fun 4790  df-fn 4791  df-f 4792  df-f1 4793  df-fo 4794  df-f1o 4795  df-fv 4796  df-2nd 4798  df-ov 5527  df-oprab 5529  df-mpt 5653  df-mpt2 5655  df-txp 5737  df-fix 5741  df-compose 5749  df-ins2 5751  df-ins3 5753  df-image 5755  df-ins4 5757  df-si3 5759  df-funs 5761  df-fns 5763  df-pw1fn 5767  df-fullfun 5769  df-clos1 5874  df-trans 5900  df-sym 5909  df-er 5910  df-ec 5948  df-qs 5952  df-map 6002  df-en 6030  df-ncs 6099  df-nc 6102  df-2c 6105  df-ce 6107  df-spac 6275
This theorem is referenced by:  spacis  6289  nchoicelem6  6295
  Copyright terms: Public domain W3C validator