Step | Hyp | Ref
| Expression |
1 | | eqss 3288 |
. 2
⊢ (ran (C ∩ (A
× B)) = B ↔ (ran (C
∩ (A × B)) ⊆ B ∧ B ⊆ ran (C ∩ (A
× B)))) |
2 | | inss2 3477 |
. . . . 5
⊢ (C ∩ (A
× B)) ⊆ (A ×
B) |
3 | | rnss 4960 |
. . . . 5
⊢ ((C ∩ (A
× B)) ⊆ (A ×
B) → ran (C ∩ (A
× B)) ⊆ ran (A
× B)) |
4 | 2, 3 | ax-mp 5 |
. . . 4
⊢ ran (C ∩ (A
× B)) ⊆ ran (A
× B) |
5 | | rnxpss 5054 |
. . . 4
⊢ ran (A × B)
⊆ B |
6 | 4, 5 | sstri 3282 |
. . 3
⊢ ran (C ∩ (A
× B)) ⊆ B |
7 | 6 | biantrur 492 |
. 2
⊢ (B ⊆ ran (C ∩ (A
× B)) ↔ (ran (C ∩ (A
× B)) ⊆ B ∧ B ⊆ ran (C ∩
(A × B)))) |
8 | | ssv 3292 |
. . . . . . . 8
⊢ B ⊆
V |
9 | | xpss2 4858 |
. . . . . . . 8
⊢ (B ⊆ V →
(A × B) ⊆ (A × V)) |
10 | 8, 9 | ax-mp 5 |
. . . . . . 7
⊢ (A × B)
⊆ (A
× V) |
11 | | sslin 3482 |
. . . . . . 7
⊢ ((A × B)
⊆ (A
× V) → (C ∩ (A × B))
⊆ (C
∩ (A × V))) |
12 | 10, 11 | ax-mp 5 |
. . . . . 6
⊢ (C ∩ (A
× B)) ⊆ (C ∩
(A × V)) |
13 | | df-res 4789 |
. . . . . 6
⊢ (C ↾ A) = (C ∩
(A × V)) |
14 | 12, 13 | sseqtr4i 3305 |
. . . . 5
⊢ (C ∩ (A
× B)) ⊆ (C ↾ A) |
15 | | rnss 4960 |
. . . . 5
⊢ ((C ∩ (A
× B)) ⊆ (C ↾ A) →
ran (C ∩ (A × B))
⊆ ran (C
↾ A)) |
16 | 14, 15 | ax-mp 5 |
. . . 4
⊢ ran (C ∩ (A
× B)) ⊆ ran (C ↾ A) |
17 | | sstr 3281 |
. . . 4
⊢ ((B ⊆ ran (C ∩ (A
× B)) ∧ ran (C ∩
(A × B)) ⊆ ran
(C ↾
A)) → B ⊆ ran (C ↾ A)) |
18 | 16, 17 | mpan2 652 |
. . 3
⊢ (B ⊆ ran (C ∩ (A
× B)) → B ⊆ ran (C ↾ A)) |
19 | | ssel 3268 |
. . . . . . 7
⊢ (B ⊆ ran (C ↾ A) → (y
∈ B
→ y ∈ ran (C ↾ A))) |
20 | | elrn2 4898 |
. . . . . . 7
⊢ (y ∈ ran (C ↾ A) ↔ ∃x〈x, y〉 ∈ (C ↾ A)) |
21 | 19, 20 | syl6ib 217 |
. . . . . 6
⊢ (B ⊆ ran (C ↾ A) → (y
∈ B
→ ∃x〈x, y〉 ∈ (C ↾ A))) |
22 | 21 | ancrd 537 |
. . . . 5
⊢ (B ⊆ ran (C ↾ A) → (y
∈ B
→ (∃x〈x, y〉 ∈ (C ↾ A) ∧ y ∈ B))) |
23 | | elrn2 4898 |
. . . . . 6
⊢ (y ∈ ran (C ∩ (A
× B)) ↔ ∃x〈x, y〉 ∈ (C ∩
(A × B))) |
24 | | elin 3220 |
. . . . . . . 8
⊢ (〈x, y〉 ∈ (C ∩
(A × B)) ↔ (〈x, y〉 ∈ C ∧ 〈x, y〉 ∈ (A × B))) |
25 | | opelxp 4812 |
. . . . . . . . 9
⊢ (〈x, y〉 ∈ (A ×
B) ↔ (x ∈ A ∧ y ∈ B)) |
26 | 25 | anbi2i 675 |
. . . . . . . 8
⊢ ((〈x, y〉 ∈ C ∧ 〈x, y〉 ∈ (A × B))
↔ (〈x, y〉 ∈ C ∧ (x ∈ A ∧ y ∈ B))) |
27 | | opelres 4951 |
. . . . . . . . . 10
⊢ (〈x, y〉 ∈ (C ↾ A) ↔
(〈x,
y〉 ∈ C ∧ x ∈ A)) |
28 | 27 | anbi1i 676 |
. . . . . . . . 9
⊢ ((〈x, y〉 ∈ (C ↾ A) ∧ y ∈ B) ↔
((〈x,
y〉 ∈ C ∧ x ∈ A) ∧ y ∈ B)) |
29 | | anass 630 |
. . . . . . . . 9
⊢ (((〈x, y〉 ∈ C ∧ x ∈ A) ∧ y ∈ B) ↔
(〈x,
y〉 ∈ C ∧ (x ∈ A ∧ y ∈ B))) |
30 | 28, 29 | bitr2i 241 |
. . . . . . . 8
⊢ ((〈x, y〉 ∈ C ∧ (x ∈ A ∧ y ∈ B)) ↔
(〈x,
y〉 ∈ (C ↾ A) ∧ y ∈ B)) |
31 | 24, 26, 30 | 3bitri 262 |
. . . . . . 7
⊢ (〈x, y〉 ∈ (C ∩
(A × B)) ↔ (〈x, y〉 ∈ (C ↾ A) ∧ y ∈ B)) |
32 | 31 | exbii 1582 |
. . . . . 6
⊢ (∃x〈x, y〉 ∈ (C ∩
(A × B)) ↔ ∃x(〈x, y〉 ∈ (C ↾ A) ∧ y ∈ B)) |
33 | | 19.41v 1901 |
. . . . . 6
⊢ (∃x(〈x, y〉 ∈ (C ↾ A) ∧ y ∈ B) ↔
(∃x〈x, y〉 ∈ (C ↾ A) ∧ y ∈ B)) |
34 | 23, 32, 33 | 3bitri 262 |
. . . . 5
⊢ (y ∈ ran (C ∩ (A
× B)) ↔ (∃x〈x, y〉 ∈ (C ↾ A) ∧ y ∈ B)) |
35 | 22, 34 | syl6ibr 218 |
. . . 4
⊢ (B ⊆ ran (C ↾ A) → (y
∈ B
→ y ∈ ran (C ∩
(A × B)))) |
36 | 35 | ssrdv 3279 |
. . 3
⊢ (B ⊆ ran (C ↾ A) → B
⊆ ran (C
∩ (A × B))) |
37 | 18, 36 | impbii 180 |
. 2
⊢ (B ⊆ ran (C ∩ (A
× B)) ↔ B ⊆ ran (C ↾ A)) |
38 | 1, 7, 37 | 3bitr2ri 265 |
1
⊢ (B ⊆ ran (C ↾ A) ↔ ran (C
∩ (A × B)) = B) |