| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > uni0b | GIF version | ||
| Description: The union of a set is empty iff the set is included in the singleton of the empty set. (Contributed by NM, 12-Sep-2004.) |
| Ref | Expression |
|---|---|
| uni0b | ⊢ (∪A = ∅ ↔ A ⊆ {∅}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elsn 3749 | . . 3 ⊢ (x ∈ {∅} ↔ x = ∅) | |
| 2 | 1 | ralbii 2639 | . 2 ⊢ (∀x ∈ A x ∈ {∅} ↔ ∀x ∈ A x = ∅) |
| 3 | dfss3 3264 | . 2 ⊢ (A ⊆ {∅} ↔ ∀x ∈ A x ∈ {∅}) | |
| 4 | neq0 3561 | . . . 4 ⊢ (¬ ∪A = ∅ ↔ ∃y y ∈ ∪A) | |
| 5 | rexcom4 2879 | . . . . 5 ⊢ (∃x ∈ A ∃y y ∈ x ↔ ∃y∃x ∈ A y ∈ x) | |
| 6 | neq0 3561 | . . . . . 6 ⊢ (¬ x = ∅ ↔ ∃y y ∈ x) | |
| 7 | 6 | rexbii 2640 | . . . . 5 ⊢ (∃x ∈ A ¬ x = ∅ ↔ ∃x ∈ A ∃y y ∈ x) |
| 8 | eluni2 3896 | . . . . . 6 ⊢ (y ∈ ∪A ↔ ∃x ∈ A y ∈ x) | |
| 9 | 8 | exbii 1582 | . . . . 5 ⊢ (∃y y ∈ ∪A ↔ ∃y∃x ∈ A y ∈ x) |
| 10 | 5, 7, 9 | 3bitr4ri 269 | . . . 4 ⊢ (∃y y ∈ ∪A ↔ ∃x ∈ A ¬ x = ∅) |
| 11 | rexnal 2626 | . . . 4 ⊢ (∃x ∈ A ¬ x = ∅ ↔ ¬ ∀x ∈ A x = ∅) | |
| 12 | 4, 10, 11 | 3bitri 262 | . . 3 ⊢ (¬ ∪A = ∅ ↔ ¬ ∀x ∈ A x = ∅) |
| 13 | 12 | con4bii 288 | . 2 ⊢ (∪A = ∅ ↔ ∀x ∈ A x = ∅) |
| 14 | 2, 3, 13 | 3bitr4ri 269 | 1 ⊢ (∪A = ∅ ↔ A ⊆ {∅}) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 176 ∃wex 1541 = wceq 1642 ∈ wcel 1710 ∀wral 2615 ∃wrex 2616 ⊆ wss 3258 ∅c0 3551 {csn 3738 ∪cuni 3892 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-dif 3216 df-ss 3260 df-nul 3552 df-sn 3742 df-uni 3893 |
| This theorem is referenced by: uni0c 3918 uni0 3919 |
| Copyright terms: Public domain | W3C validator |