NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  uni0b GIF version

Theorem uni0b 3917
Description: The union of a set is empty iff the set is included in the singleton of the empty set. (Contributed by NM, 12-Sep-2004.)
Assertion
Ref Expression
uni0b (A = A {})

Proof of Theorem uni0b
Dummy variables x y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elsn 3749 . . 3 (x {} ↔ x = )
21ralbii 2639 . 2 (x A x {} ↔ x A x = )
3 dfss3 3264 . 2 (A {} ↔ x A x {})
4 neq0 3561 . . . 4 A = y y A)
5 rexcom4 2879 . . . . 5 (x A y y xyx A y x)
6 neq0 3561 . . . . . 6 x = y y x)
76rexbii 2640 . . . . 5 (x A ¬ x = x A y y x)
8 eluni2 3896 . . . . . 6 (y Ax A y x)
98exbii 1582 . . . . 5 (y y Ayx A y x)
105, 7, 93bitr4ri 269 . . . 4 (y y Ax A ¬ x = )
11 rexnal 2626 . . . 4 (x A ¬ x = ↔ ¬ x A x = )
124, 10, 113bitri 262 . . 3 A = ↔ ¬ x A x = )
1312con4bii 288 . 2 (A = x A x = )
142, 3, 133bitr4ri 269 1 (A = A {})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 176  wex 1541   = wceq 1642   wcel 1710  wral 2615  wrex 2616   wss 3258  c0 3551  {csn 3738  cuni 3892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-dif 3216  df-ss 3260  df-nul 3552  df-sn 3742  df-uni 3893
This theorem is referenced by:  uni0c  3918  uni0  3919
  Copyright terms: Public domain W3C validator