New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > uniabio | GIF version |
Description: Part of Theorem 8.17 in [Quine] p. 56. This theorem serves as a lemma for the fundamental property of iota. (Contributed by Andrew Salmon, 11-Jul-2011.) |
Ref | Expression |
---|---|
uniabio | ⊢ (∀x(φ ↔ x = y) → ∪{x ∣ φ} = y) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abbi 2463 | . . . . 5 ⊢ (∀x(φ ↔ x = y) ↔ {x ∣ φ} = {x ∣ x = y}) | |
2 | 1 | biimpi 186 | . . . 4 ⊢ (∀x(φ ↔ x = y) → {x ∣ φ} = {x ∣ x = y}) |
3 | df-sn 3741 | . . . 4 ⊢ {y} = {x ∣ x = y} | |
4 | 2, 3 | syl6eqr 2403 | . . 3 ⊢ (∀x(φ ↔ x = y) → {x ∣ φ} = {y}) |
5 | 4 | unieqd 3902 | . 2 ⊢ (∀x(φ ↔ x = y) → ∪{x ∣ φ} = ∪{y}) |
6 | vex 2862 | . . 3 ⊢ y ∈ V | |
7 | 6 | unisn 3907 | . 2 ⊢ ∪{y} = y |
8 | 5, 7 | syl6eq 2401 | 1 ⊢ (∀x(φ ↔ x = y) → ∪{x ∣ φ} = y) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∀wal 1540 = wceq 1642 {cab 2339 {csn 3737 ∪cuni 3891 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-rex 2620 df-v 2861 df-nin 3211 df-compl 3212 df-un 3214 df-sn 3741 df-pr 3742 df-uni 3892 |
This theorem is referenced by: iotaval 4350 iotauni 4351 |
Copyright terms: Public domain | W3C validator |