| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > weds | Unicode version | ||
| Description: Any property that holds
for some element of a well-ordered set  | 
| Ref | Expression | 
|---|---|
| weds.1 | 
 | 
| weds.2 | 
 | 
| weds.3 | 
 | 
| weds.4 | 
 | 
| weds.5 | 
 | 
| Ref | Expression | 
|---|---|
| weds | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | weds.1 | 
. . 3
 | |
| 2 | weds.2 | 
. . 3
 | |
| 3 | weds.3 | 
. . 3
 | |
| 4 | weds.4 | 
. . . 4
 | |
| 5 | df-we 5907 | 
. . . . . . 7
 | |
| 6 | 5 | breqi 4646 | 
. . . . . 6
 | 
| 7 | brin 4694 | 
. . . . . 6
 | |
| 8 | 6, 7 | bitri 240 | 
. . . . 5
 | 
| 9 | 8 | simprbi 450 | 
. . . 4
 | 
| 10 | 4, 9 | syl 15 | 
. . 3
 | 
| 11 | weds.5 | 
. . 3
 | |
| 12 | 1, 2, 3, 10, 11 | frds 5936 | 
. 2
 | 
| 13 | impexp 433 | 
. . . . . . 7
 | |
| 14 | 8 | simplbi 446 | 
. . . . . . . . . . . . 13
 | 
| 15 | 4, 14 | syl 15 | 
. . . . . . . . . . . 12
 | 
| 16 | sopc 5935 | 
. . . . . . . . . . . . 13
 | |
| 17 | 16 | simprbi 450 | 
. . . . . . . . . . . 12
 | 
| 18 | 15, 17 | syl 15 | 
. . . . . . . . . . 11
 | 
| 19 | 18 | adantr 451 | 
. . . . . . . . . 10
 | 
| 20 | simprl 732 | 
. . . . . . . . . 10
 | |
| 21 | simprr 733 | 
. . . . . . . . . 10
 | |
| 22 | 19, 20, 21 | connexd 5932 | 
. . . . . . . . 9
 | 
| 23 | ax1 1431 | 
. . . . . . . . . . 11
 | |
| 24 | 23 | a1i 10 | 
. . . . . . . . . 10
 | 
| 25 | pm2.27 35 | 
. . . . . . . . . . 11
 | |
| 26 | porta 5934 | 
. . . . . . . . . . . . . . . . . . 19
 | |
| 27 | 26 | simp1bi 970 | 
. . . . . . . . . . . . . . . . . 18
 | 
| 28 | 27 | adantr 451 | 
. . . . . . . . . . . . . . . . 17
 | 
| 29 | 16, 28 | sylbi 187 | 
. . . . . . . . . . . . . . . 16
 | 
| 30 | 15, 29 | syl 15 | 
. . . . . . . . . . . . . . 15
 | 
| 31 | 30 | adantr 451 | 
. . . . . . . . . . . . . 14
 | 
| 32 | simpr 447 | 
. . . . . . . . . . . . . 14
 | |
| 33 | 31, 32 | refd 5928 | 
. . . . . . . . . . . . 13
 | 
| 34 | 33 | adantrl 696 | 
. . . . . . . . . . . 12
 | 
| 35 | breq1 4643 | 
. . . . . . . . . . . 12
 | |
| 36 | 34, 35 | syl5ibcom 211 | 
. . . . . . . . . . 11
 | 
| 37 | 25, 36 | syl9r 67 | 
. . . . . . . . . 10
 | 
| 38 | 24, 37 | jaod 369 | 
. . . . . . . . 9
 | 
| 39 | 22, 38 | mpd 14 | 
. . . . . . . 8
 | 
| 40 | 39 | imim2d 48 | 
. . . . . . 7
 | 
| 41 | 13, 40 | syl5bi 208 | 
. . . . . 6
 | 
| 42 | 41 | anassrs 629 | 
. . . . 5
 | 
| 43 | 42 | ralimdva 2693 | 
. . . 4
 | 
| 44 | 43 | anim2d 548 | 
. . 3
 | 
| 45 | 44 | reximdva 2727 | 
. 2
 | 
| 46 | 12, 45 | mpd 14 | 
1
 | 
| Colors of variables: wff setvar class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-meredith 1406 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 | 
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-evenfin 4445 df-oddfin 4446 df-sfin 4447 df-spfin 4448 df-phi 4566 df-op 4567 df-proj1 4568 df-proj2 4569 df-opab 4624 df-br 4641 df-ref 5901 df-partial 5903 df-connex 5904 df-strict 5905 df-found 5906 df-we 5907 | 
| This theorem is referenced by: nchoicelem19 6308 | 
| Copyright terms: Public domain | W3C validator |