New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > weds | Unicode version |
Description: Any property that holds for some element of a well-ordered set has an minimal element satisfying that property. (Contributed by SF, 20-Mar-2015.) |
Ref | Expression |
---|---|
weds.1 | |
weds.2 | |
weds.3 | |
weds.4 | We |
weds.5 |
Ref | Expression |
---|---|
weds |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | weds.1 | . . 3 | |
2 | weds.2 | . . 3 | |
3 | weds.3 | . . 3 | |
4 | weds.4 | . . . 4 We | |
5 | df-we 5907 | . . . . . . 7 We Or Fr | |
6 | 5 | breqi 4646 | . . . . . 6 We Or Fr |
7 | brin 4694 | . . . . . 6 Or Fr Or Fr | |
8 | 6, 7 | bitri 240 | . . . . 5 We Or Fr |
9 | 8 | simprbi 450 | . . . 4 We Fr |
10 | 4, 9 | syl 15 | . . 3 Fr |
11 | weds.5 | . . 3 | |
12 | 1, 2, 3, 10, 11 | frds 5936 | . 2 |
13 | impexp 433 | . . . . . . 7 | |
14 | 8 | simplbi 446 | . . . . . . . . . . . . 13 We Or |
15 | 4, 14 | syl 15 | . . . . . . . . . . . 12 Or |
16 | sopc 5935 | . . . . . . . . . . . . 13 Or Po Connex | |
17 | 16 | simprbi 450 | . . . . . . . . . . . 12 Or Connex |
18 | 15, 17 | syl 15 | . . . . . . . . . . 11 Connex |
19 | 18 | adantr 451 | . . . . . . . . . 10 Connex |
20 | simprl 732 | . . . . . . . . . 10 | |
21 | simprr 733 | . . . . . . . . . 10 | |
22 | 19, 20, 21 | connexd 5932 | . . . . . . . . 9 |
23 | ax1 1431 | . . . . . . . . . . 11 | |
24 | 23 | a1i 10 | . . . . . . . . . 10 |
25 | pm2.27 35 | . . . . . . . . . . 11 | |
26 | porta 5934 | . . . . . . . . . . . . . . . . . . 19 Po Ref Trans Antisym | |
27 | 26 | simp1bi 970 | . . . . . . . . . . . . . . . . . 18 Po Ref |
28 | 27 | adantr 451 | . . . . . . . . . . . . . . . . 17 Po Connex Ref |
29 | 16, 28 | sylbi 187 | . . . . . . . . . . . . . . . 16 Or Ref |
30 | 15, 29 | syl 15 | . . . . . . . . . . . . . . 15 Ref |
31 | 30 | adantr 451 | . . . . . . . . . . . . . 14 Ref |
32 | simpr 447 | . . . . . . . . . . . . . 14 | |
33 | 31, 32 | refd 5928 | . . . . . . . . . . . . 13 |
34 | 33 | adantrl 696 | . . . . . . . . . . . 12 |
35 | breq1 4643 | . . . . . . . . . . . 12 | |
36 | 34, 35 | syl5ibcom 211 | . . . . . . . . . . 11 |
37 | 25, 36 | syl9r 67 | . . . . . . . . . 10 |
38 | 24, 37 | jaod 369 | . . . . . . . . 9 |
39 | 22, 38 | mpd 14 | . . . . . . . 8 |
40 | 39 | imim2d 48 | . . . . . . 7 |
41 | 13, 40 | syl5bi 208 | . . . . . 6 |
42 | 41 | anassrs 629 | . . . . 5 |
43 | 42 | ralimdva 2693 | . . . 4 |
44 | 43 | anim2d 548 | . . 3 |
45 | 44 | reximdva 2727 | . 2 |
46 | 12, 45 | mpd 14 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wi 4 wb 176 wo 357 wa 358 wcel 1710 cab 2339 wral 2615 wrex 2616 cvv 2860 cin 3209 class class class wbr 4640 Trans ctrans 5889 Ref cref 5890 Antisym cantisym 5891 Po cpartial 5892 Connex cconnex 5893 Or cstrict 5894 Fr cfound 5895 We cwe 5896 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-meredith 1406 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-evenfin 4445 df-oddfin 4446 df-sfin 4447 df-spfin 4448 df-phi 4566 df-op 4567 df-proj1 4568 df-proj2 4569 df-opab 4624 df-br 4641 df-ref 5901 df-partial 5903 df-connex 5904 df-strict 5905 df-found 5906 df-we 5907 |
This theorem is referenced by: nchoicelem19 6308 |
Copyright terms: Public domain | W3C validator |