New Foundations Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  NFE Home  >  Th. List  >  nchoicelem19 Unicode version

Theorem nchoicelem19 6307
 Description: Lemma for nchoice 6308. Assuming well-ordering, there is a cardinal with a finite special set that is its own T-raising. Theorem 7.3 of [Specker] p. 974. (Contributed by SF, 20-Mar-2015.)
Assertion
Ref Expression
nchoicelem19 c We NC NC Spac Fin Tc

Proof of Theorem nchoicelem19
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nchoicelem18 6306 . . 3 Spac Fin
2 fveq2 5328 . . . 4 Spac Spac
32eleq1d 2419 . . 3 Spac Fin Spac Fin
4 fveq2 5328 . . . 4 Spac Spac
54eleq1d 2419 . . 3 Spac Fin Spac Fin
6 id 19 . . 3 c We NC c We NC
7 vvex 4109 . . . . 5
87ncelncsi 6121 . . . 4 Nc NC
9 ltcpw1pwg 6202 . . . . . . . . 9 Nc 1 c Nc
107, 9ax-mp 8 . . . . . . . 8 Nc 1 c Nc
11 df1c2 4168 . . . . . . . . 9 1c 1
1211nceqi 6109 . . . . . . . 8 Nc 1c Nc 1
13 pwv 3886 . . . . . . . . . 10
1413nceqi 6109 . . . . . . . . 9 Nc Nc
1514eqcomi 2357 . . . . . . . 8 Nc Nc
1610, 12, 153brtr4i 4667 . . . . . . 7 Nc 1c c Nc
17 nchoicelem8 6296 . . . . . . . 8 c We NC Nc NC Nc c 0c NC Nc 1c c Nc
188, 17mpan2 652 . . . . . . 7 c We NC Nc c 0c NC Nc 1c c Nc
1916, 18mpbiri 224 . . . . . 6 c We NC Nc c 0c NC
20 nchoicelem3 6291 . . . . . 6 Nc NC Nc c 0c NC Spac Nc Nc
218, 19, 20sylancr 644 . . . . 5 c We NC Spac Nc Nc
22 snfi 4431 . . . . 5 Nc Fin
2321, 22syl6eqel 2441 . . . 4 c We NC Spac Nc Fin
24 fveq2 5328 . . . . . 6 Nc Spac Spac Nc
2524eleq1d 2419 . . . . 5 Nc Spac Fin Spac Nc Fin
2625rspcev 2955 . . . 4 Nc NC Spac Nc Fin NC Spac Fin
278, 23, 26sylancr 644 . . 3 c We NC NC Spac Fin
281, 3, 5, 6, 27weds 5938 . 2 c We NC NC Spac Fin NC Spac Fin c
29 simpll 730 . . . . . . 7 c We NC NC Spac Fin NC Spac Fin c c We NC
30 df-we 5906 . . . . . . . . . . 11 We Or Fr
3130breqi 4645 . . . . . . . . . 10 c We NC c Or Fr NC
32 brin 4693 . . . . . . . . . 10 c Or Fr NC c Or NC c Fr NC
3331, 32bitri 240 . . . . . . . . 9 c We NC c Or NC c Fr NC
3433simplbi 446 . . . . . . . 8 c We NC c Or NC
35 sopc 5934 . . . . . . . . . 10 c Or NC c Po NC c Connex NC
3635simplbi 446 . . . . . . . . 9 c Or NC c Po NC
37 porta 5933 . . . . . . . . . 10 c Po NC c Ref NC c Trans NC c Antisym NC
3837simp3bi 972 . . . . . . . . 9 c Po NC c Antisym NC
3936, 38syl 15 . . . . . . . 8 c Or NC c Antisym NC
4034, 39syl 15 . . . . . . 7 c We NC c Antisym NC
4129, 40syl 15 . . . . . 6 c We NC NC Spac Fin NC Spac Fin c c Antisym NC
42 simplr 731 . . . . . . 7 c We NC NC Spac Fin NC Spac Fin c NC
43 tccl 6160 . . . . . . 7 NC Tc NC
4442, 43syl 15 . . . . . 6 c We NC NC Spac Fin NC Spac Fin c Tc NC
45 simprr 733 . . . . . . . 8 c We NC NC Spac Fin NC Spac Fin c NC Spac Fin c
46 simprl 732 . . . . . . . . . 10 c We NC NC Spac Fin NC Spac Fin c Spac Fin
47 nchoicelem17 6305 . . . . . . . . . 10 c We NC NC Spac Fin Spac Tc Fin Nc Spac Tc Tc Nc Spac 1c Nc Spac Tc Tc Nc Spac 2c
4829, 42, 46, 47syl3anc 1182 . . . . . . . . 9 c We NC NC Spac Fin NC Spac Fin c Spac Tc Fin Nc Spac Tc Tc Nc Spac 1c Nc Spac Tc Tc Nc Spac 2c
4948simpld 445 . . . . . . . 8 c We NC NC Spac Fin NC Spac Fin c Spac Tc Fin
50 fveq2 5328 . . . . . . . . . . 11 Tc Spac Spac Tc
5150eleq1d 2419 . . . . . . . . . 10 Tc Spac Fin Spac Tc Fin
52 breq2 4643 . . . . . . . . . 10 Tc c c Tc
5351, 52imbi12d 311 . . . . . . . . 9 Tc Spac Fin c Spac Tc Fin c Tc
5453rspcv 2951 . . . . . . . 8 Tc NC NC Spac Fin c Spac Tc Fin c Tc
5544, 45, 49, 54syl3c 57 . . . . . . 7 c We NC NC Spac Fin NC Spac Fin c c Tc
56 letc 6231 . . . . . . . . . 10 NC NC c Tc NC Tc
57563expia 1153 . . . . . . . . 9 NC NC c Tc NC Tc
5842, 42, 57syl2anc 642 . . . . . . . 8 c We NC NC Spac Fin NC Spac Fin c c Tc NC Tc
59 nchoicelem12 6300 . . . . . . . . . . . . . . . 16 NC Spac Tc Fin Spac Fin
6059ad2ant2lr 728 . . . . . . . . . . . . . . 15 c We NC NC Spac Tc Fin NC Spac Fin Tc c Spac Fin
61 fveq2 5328 . . . . . . . . . . . . . . . . . . . 20 Spac Spac
6261eleq1d 2419 . . . . . . . . . . . . . . . . . . 19 Spac Fin Spac Fin
63 breq2 4643 . . . . . . . . . . . . . . . . . . 19 Tc c Tc c
6462, 63imbi12d 311 . . . . . . . . . . . . . . . . . 18 Spac Fin Tc c Spac Fin Tc c
6564rspcv 2951 . . . . . . . . . . . . . . . . 17 NC NC Spac Fin Tc c Spac Fin Tc c
6665imp 418 . . . . . . . . . . . . . . . 16 NC NC Spac Fin Tc c Spac Fin Tc c
6766ad2ant2l 726 . . . . . . . . . . . . . . 15 c We NC NC Spac Tc Fin NC Spac Fin Tc c Spac Fin Tc c
6860, 67mpd 14 . . . . . . . . . . . . . 14 c We NC NC Spac Tc Fin NC Spac Fin Tc c Tc c
69 simplr 731 . . . . . . . . . . . . . . . 16 c We NC NC Spac Tc Fin NC Spac Fin Tc c NC
70 tccl 6160 . . . . . . . . . . . . . . . 16 NC Tc NC
7169, 70syl 15 . . . . . . . . . . . . . . 15 c We NC NC Spac Tc Fin NC Spac Fin Tc c Tc NC
72 tlecg 6230 . . . . . . . . . . . . . . 15 Tc NC NC Tc c Tc Tc c Tc
7371, 69, 72syl2anc 642 . . . . . . . . . . . . . 14 c We NC NC Spac Tc Fin NC Spac Fin Tc c Tc c Tc Tc c Tc
7468, 73mpbid 201 . . . . . . . . . . . . 13 c We NC NC Spac Tc Fin NC Spac Fin Tc c Tc Tc c Tc
75 fveq2 5328 . . . . . . . . . . . . . . . . 17 Tc Spac Spac Tc
7675eleq1d 2419 . . . . . . . . . . . . . . . 16 Tc Spac Fin Spac Tc Fin
77 breq1 4642 . . . . . . . . . . . . . . . . . 18 Tc c Tc c
7877imbi2d 307 . . . . . . . . . . . . . . . . 17 Tc Spac Fin c Spac Fin Tc c
7978ralbidv 2634 . . . . . . . . . . . . . . . 16 Tc NC Spac Fin c NC Spac Fin Tc c
8076, 79anbi12d 691 . . . . . . . . . . . . . . 15 Tc Spac Fin NC Spac Fin c Spac Tc Fin NC Spac Fin Tc c
8180anbi2d 684 . . . . . . . . . . . . . 14 Tc c We NC NC Spac Fin NC Spac Fin c c We NC NC Spac Tc Fin NC Spac Fin Tc c
82 tceq 6158 . . . . . . . . . . . . . . 15 Tc Tc Tc Tc
83 id 19 . . . . . . . . . . . . . . 15 Tc Tc
8482, 83breq12d 4652 . . . . . . . . . . . . . 14 Tc Tc c Tc Tc c Tc
8581, 84imbi12d 311 . . . . . . . . . . . . 13 Tc c We NC NC Spac Fin NC Spac Fin c Tc c c We NC NC Spac Tc Fin NC Spac Fin Tc c Tc Tc c Tc
8674, 85mpbiri 224 . . . . . . . . . . . 12 Tc c We NC NC Spac Fin NC Spac Fin c Tc c
8786com12 27 . . . . . . . . . . 11 c We NC NC Spac Fin NC Spac Fin c Tc Tc c
8887an32s 779 . . . . . . . . . 10 c We NC Spac Fin NC Spac Fin c NC Tc Tc c
8988rexlimdva 2738 . . . . . . . . 9 c We NC Spac Fin NC Spac Fin c NC Tc Tc c
9089adantlr 695 . . . . . . . 8 c We NC NC Spac Fin NC Spac Fin c NC Tc Tc c
9158, 90syld 40 . . . . . . 7 c We NC NC Spac Fin NC Spac Fin c c Tc Tc c
9255, 91mpd 14 . . . . . 6 c We NC NC Spac Fin NC Spac Fin c Tc c
9341, 44, 42, 92, 55antid 5929 . . . . 5 c We NC NC Spac Fin NC Spac Fin c Tc
9493exp32 588 . . . 4 c We NC NC Spac Fin NC Spac Fin c Tc
9594imdistand 673 . . 3 c We NC NC Spac Fin NC Spac Fin c Spac Fin Tc
9695reximdva 2726 . 2 c We NC NC Spac Fin NC Spac Fin c NC Spac Fin Tc
9728, 96mpd 14 1 c We NC NC Spac Fin Tc
 Colors of variables: wff setvar class Syntax hints:   wn 3   wi 4   wb 176   wo 357   wa 358   wceq 1642   wcel 1710  wral 2614  wrex 2615  cvv 2859   cin 3208  cpw 3722  csn 3737  1cc1c 4134  1 cpw1 4135  0cc0c 4374   cplc 4375   Fin cfin 4376   class class class wbr 4639  cfv 4781  (class class class)co 5525   Trans ctrans 5888   Ref cref 5889   Antisym cantisym 5890   Po cpartial 5891   Connex cconnex 5892   Or cstrict 5893   Fr cfound 5894   We cwe 5895   NC cncs 6088   c clec 6089   c cltc 6090   Nc cnc 6091   Tc ctc 6093  2cc2c 6094   ↑c cce 6096   Spac cspac 6273 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-meredith 1406  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4078  ax-xp 4079  ax-cnv 4080  ax-1c 4081  ax-sset 4082  ax-si 4083  ax-ins2 4084  ax-ins3 4085  ax-typlower 4086  ax-sn 4087 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2478  df-ne 2518  df-ral 2619  df-rex 2620  df-reu 2621  df-rmo 2622  df-rab 2623  df-v 2861  df-sbc 3047  df-csb 3137  df-nin 3211  df-compl 3212  df-in 3213  df-un 3214  df-dif 3215  df-symdif 3216  df-ss 3259  df-pss 3261  df-nul 3551  df-if 3663  df-pw 3724  df-sn 3741  df-pr 3742  df-tp 3743  df-uni 3892  df-int 3927  df-iun 3971  df-opk 4058  df-1c 4136  df-pw1 4137  df-uni1 4138  df-xpk 4185  df-cnvk 4186  df-ins2k 4187  df-ins3k 4188  df-imak 4189  df-cok 4190  df-p6 4191  df-sik 4192  df-ssetk 4193  df-imagek 4194  df-idk 4195  df-iota 4339  df-0c 4377  df-addc 4378  df-nnc 4379  df-fin 4380  df-lefin 4440  df-ltfin 4441  df-ncfin 4442  df-tfin 4443  df-evenfin 4444  df-oddfin 4445  df-sfin 4446  df-spfin 4447  df-phi 4565  df-op 4566  df-proj1 4567  df-proj2 4568  df-opab 4623  df-br 4640  df-1st 4723  df-swap 4724  df-sset 4725  df-co 4726  df-ima 4727  df-si 4728  df-id 4767  df-xp 4784  df-cnv 4785  df-rn 4786  df-dm 4787  df-res 4788  df-fun 4789  df-fn 4790  df-f 4791  df-f1 4792  df-fo 4793  df-f1o 4794  df-fv 4795  df-2nd 4797  df-ov 5526  df-oprab 5528  df-mpt 5652  df-mpt2 5654  df-txp 5736  df-fix 5740  df-cup 5742  df-disj 5744  df-addcfn 5746  df-compose 5748  df-ins2 5750  df-ins3 5752  df-image 5754  df-ins4 5756  df-si3 5758  df-funs 5760  df-fns 5762  df-pw1fn 5766  df-fullfun 5768  df-clos1 5873  df-trans 5899  df-ref 5900  df-antisym 5901  df-partial 5902  df-connex 5903  df-strict 5904  df-found 5905  df-we 5906  df-sym 5908  df-er 5909  df-ec 5947  df-qs 5951  df-map 6001  df-en 6029  df-ncs 6098  df-lec 6099  df-ltc 6100  df-nc 6101  df-tc 6103  df-2c 6104  df-3c 6105  df-ce 6106  df-tcfn 6107  df-spac 6274 This theorem is referenced by:  nchoice  6308
 Copyright terms: Public domain W3C validator