![]() |
New Foundations Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > NFE Home > Th. List > cnvkex | Unicode version |
Description: The Kuratowski converse of a set is a set. (Contributed by SF, 14-Jan-2015.) |
Ref | Expression |
---|---|
cnvkex.1 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
cnvkex |
![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvkex.1 |
. 2
![]() ![]() ![]() ![]() | |
2 | cnvkexg 4286 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | ax-mp 8 |
1
![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4078 ax-xp 4079 ax-cnv 4080 ax-sn 4087 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-ne 2518 df-ral 2619 df-rex 2620 df-v 2861 df-nin 3211 df-compl 3212 df-in 3213 df-un 3214 df-dif 3215 df-ss 3259 df-nul 3551 df-sn 3741 df-pr 3742 df-opk 4058 df-xpk 4185 df-cnvk 4186 |
This theorem is referenced by: idkex 4314 uniexg 4316 intexg 4319 nncaddccl 4419 nnsucelrlem1 4424 preaddccan2lem1 4454 ltfintrilem1 4465 ncfinlowerlem1 4482 tfinrelkex 4487 oddfinex 4504 evenodddisjlem1 4515 nnpweqlem1 4522 sfintfinlem1 4531 tfinnnlem1 4533 vfinspclt 4552 opexg 4587 proj1exg 4591 proj2exg 4592 phialllem1 4616 setconslem5 4735 1stex 4739 swapex 4742 ssetex 4744 coexg 4749 siexg 4752 |
Copyright terms: Public domain | W3C validator |