New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > cnvkex | Unicode version |
Description: The Kuratowski converse of a set is a set. (Contributed by SF, 14-Jan-2015.) |
Ref | Expression |
---|---|
cnvkex.1 |
Ref | Expression |
---|---|
cnvkex | k |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvkex.1 | . 2 | |
2 | cnvkexg 4287 | . 2 k | |
3 | 1, 2 | ax-mp 5 | 1 k |
Colors of variables: wff setvar class |
Syntax hints: wcel 1710 cvv 2860 kccnvk 4176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-ss 3260 df-nul 3552 df-sn 3742 df-pr 3743 df-opk 4059 df-xpk 4186 df-cnvk 4187 |
This theorem is referenced by: idkex 4315 uniexg 4317 intexg 4320 nncaddccl 4420 nnsucelrlem1 4425 preaddccan2lem1 4455 ltfintrilem1 4466 ncfinlowerlem1 4483 tfinrelkex 4488 oddfinex 4505 evenodddisjlem1 4516 nnpweqlem1 4523 sfintfinlem1 4532 tfinnnlem1 4534 vfinspclt 4553 opexg 4588 proj1exg 4592 proj2exg 4593 phialllem1 4617 setconslem5 4736 1stex 4740 swapex 4743 ssetex 4745 coexg 4750 siexg 4753 |
Copyright terms: Public domain | W3C validator |