| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > cnvkexg | Unicode version | ||
| Description: The Kuratowski converse of a set is a set. (Contributed by SF, 13-Jan-2015.) |
| Ref | Expression |
|---|---|
| cnvkexg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvkeq 4216 |
. . 3
| |
| 2 | 1 | eleq1d 2419 |
. 2
|
| 3 | ax-cnv 4081 |
. . 3
| |
| 4 | inss1 3476 |
. . . . . . . 8
| |
| 5 | cnvkssvvk 4276 |
. . . . . . . 8
| |
| 6 | eqrelk 4213 |
. . . . . . . 8
| |
| 7 | 4, 5, 6 | mp2an 653 |
. . . . . . 7
|
| 8 | vex 2863 |
. . . . . . . . . . 11
| |
| 9 | vex 2863 |
. . . . . . . . . . 11
| |
| 10 | 8, 9 | opkelxpk 4249 |
. . . . . . . . . . 11
|
| 11 | 8, 9, 10 | mpbir2an 886 |
. . . . . . . . . 10
|
| 12 | elin 3220 |
. . . . . . . . . 10
| |
| 13 | 11, 12 | mpbiran 884 |
. . . . . . . . 9
|
| 14 | 8, 9 | opkelcnvk 4251 |
. . . . . . . . 9
|
| 15 | 13, 14 | bibi12i 306 |
. . . . . . . 8
|
| 16 | 15 | 2albii 1567 |
. . . . . . 7
|
| 17 | 7, 16 | bitri 240 |
. . . . . 6
|
| 18 | 17 | biimpri 197 |
. . . . 5
|
| 19 | vvex 4110 |
. . . . . . 7
| |
| 20 | xpkvexg 4286 |
. . . . . . 7
| |
| 21 | 19, 20 | ax-mp 5 |
. . . . . 6
|
| 22 | vex 2863 |
. . . . . 6
| |
| 23 | 21, 22 | inex 4106 |
. . . . 5
|
| 24 | 18, 23 | syl6eqelr 2442 |
. . . 4
|
| 25 | 24 | exlimiv 1634 |
. . 3
|
| 26 | 3, 25 | ax-mp 5 |
. 2
|
| 27 | 2, 26 | vtoclg 2915 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-sn 4088 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-ss 3260 df-nul 3552 df-sn 3742 df-pr 3743 df-opk 4059 df-xpk 4186 df-cnvk 4187 |
| This theorem is referenced by: cnvkex 4288 xpkexg 4289 cokexg 4310 imagekexg 4312 |
| Copyright terms: Public domain | W3C validator |