New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > cnvkexg | Unicode version |
Description: The Kuratowski converse of a set is a set. (Contributed by SF, 13-Jan-2015.) |
Ref | Expression |
---|---|
cnvkexg | k |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvkeq 4216 | . . 3 k k | |
2 | 1 | eleq1d 2419 | . 2 k k |
3 | ax-cnv 4081 | . . 3 | |
4 | inss1 3476 | . . . . . . . 8 k k | |
5 | cnvkssvvk 4276 | . . . . . . . 8 k k | |
6 | eqrelk 4213 | . . . . . . . 8 k k k k k k k k | |
7 | 4, 5, 6 | mp2an 653 | . . . . . . 7 k k k k |
8 | vex 2863 | . . . . . . . . . . 11 | |
9 | vex 2863 | . . . . . . . . . . 11 | |
10 | 8, 9 | opkelxpk 4249 | . . . . . . . . . . 11 k |
11 | 8, 9, 10 | mpbir2an 886 | . . . . . . . . . 10 k |
12 | elin 3220 | . . . . . . . . . 10 k k | |
13 | 11, 12 | mpbiran 884 | . . . . . . . . 9 k |
14 | 8, 9 | opkelcnvk 4251 | . . . . . . . . 9 k |
15 | 13, 14 | bibi12i 306 | . . . . . . . 8 k k |
16 | 15 | 2albii 1567 | . . . . . . 7 k k |
17 | 7, 16 | bitri 240 | . . . . . 6 k k |
18 | 17 | biimpri 197 | . . . . 5 k k |
19 | vvex 4110 | . . . . . . 7 | |
20 | xpkvexg 4286 | . . . . . . 7 k | |
21 | 19, 20 | ax-mp 5 | . . . . . 6 k |
22 | vex 2863 | . . . . . 6 | |
23 | 21, 22 | inex 4106 | . . . . 5 k |
24 | 18, 23 | syl6eqelr 2442 | . . . 4 k |
25 | 24 | exlimiv 1634 | . . 3 k |
26 | 3, 25 | ax-mp 5 | . 2 k |
27 | 2, 26 | vtoclg 2915 | 1 k |
Colors of variables: wff setvar class |
Syntax hints: wi 4 wb 176 wal 1540 wex 1541 wceq 1642 wcel 1710 cvv 2860 cin 3209 wss 3258 copk 4058 k cxpk 4175 kccnvk 4176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-ss 3260 df-nul 3552 df-sn 3742 df-pr 3743 df-opk 4059 df-xpk 4186 df-cnvk 4187 |
This theorem is referenced by: cnvkex 4288 xpkexg 4289 cokexg 4310 imagekexg 4312 |
Copyright terms: Public domain | W3C validator |