| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > cnvkexg | Unicode version | ||
| Description: The Kuratowski converse of a set is a set. (Contributed by SF, 13-Jan-2015.) | 
| Ref | Expression | 
|---|---|
| cnvkexg | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cnvkeq 4216 | 
. . 3
 | |
| 2 | 1 | eleq1d 2419 | 
. 2
 | 
| 3 | ax-cnv 4081 | 
. . 3
 | |
| 4 | inss1 3476 | 
. . . . . . . 8
 | |
| 5 | cnvkssvvk 4276 | 
. . . . . . . 8
 | |
| 6 | eqrelk 4213 | 
. . . . . . . 8
 | |
| 7 | 4, 5, 6 | mp2an 653 | 
. . . . . . 7
 | 
| 8 | vex 2863 | 
. . . . . . . . . . 11
 | |
| 9 | vex 2863 | 
. . . . . . . . . . 11
 | |
| 10 | 8, 9 | opkelxpk 4249 | 
. . . . . . . . . . 11
 | 
| 11 | 8, 9, 10 | mpbir2an 886 | 
. . . . . . . . . 10
 | 
| 12 | elin 3220 | 
. . . . . . . . . 10
 | |
| 13 | 11, 12 | mpbiran 884 | 
. . . . . . . . 9
 | 
| 14 | 8, 9 | opkelcnvk 4251 | 
. . . . . . . . 9
 | 
| 15 | 13, 14 | bibi12i 306 | 
. . . . . . . 8
 | 
| 16 | 15 | 2albii 1567 | 
. . . . . . 7
 | 
| 17 | 7, 16 | bitri 240 | 
. . . . . 6
 | 
| 18 | 17 | biimpri 197 | 
. . . . 5
 | 
| 19 | vvex 4110 | 
. . . . . . 7
 | |
| 20 | xpkvexg 4286 | 
. . . . . . 7
 | |
| 21 | 19, 20 | ax-mp 5 | 
. . . . . 6
 | 
| 22 | vex 2863 | 
. . . . . 6
 | |
| 23 | 21, 22 | inex 4106 | 
. . . . 5
 | 
| 24 | 18, 23 | syl6eqelr 2442 | 
. . . 4
 | 
| 25 | 24 | exlimiv 1634 | 
. . 3
 | 
| 26 | 3, 25 | ax-mp 5 | 
. 2
 | 
| 27 | 2, 26 | vtoclg 2915 | 
1
 | 
| Colors of variables: wff setvar class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-sn 4088 | 
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-ss 3260 df-nul 3552 df-sn 3742 df-pr 3743 df-opk 4059 df-xpk 4186 df-cnvk 4187 | 
| This theorem is referenced by: cnvkex 4288 xpkexg 4289 cokexg 4310 imagekexg 4312 | 
| Copyright terms: Public domain | W3C validator |