New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > riin0 | GIF version |
Description: Relative intersection of an empty family. (Contributed by Stefan O'Rear, 3-Apr-2015.) |
Ref | Expression |
---|---|
riin0 | ⊢ (X = ∅ → (A ∩ ∩x ∈ X S) = A) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iineq1 3984 | . . 3 ⊢ (X = ∅ → ∩x ∈ X S = ∩x ∈ ∅ S) | |
2 | 1 | ineq2d 3458 | . 2 ⊢ (X = ∅ → (A ∩ ∩x ∈ X S) = (A ∩ ∩x ∈ ∅ S)) |
3 | 0iin 4025 | . . . 4 ⊢ ∩x ∈ ∅ S = V | |
4 | 3 | ineq2i 3455 | . . 3 ⊢ (A ∩ ∩x ∈ ∅ S) = (A ∩ V) |
5 | inv1 3578 | . . 3 ⊢ (A ∩ V) = A | |
6 | 4, 5 | eqtri 2373 | . 2 ⊢ (A ∩ ∩x ∈ ∅ S) = A |
7 | 2, 6 | syl6eq 2401 | 1 ⊢ (X = ∅ → (A ∩ ∩x ∈ X S) = A) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1642 Vcvv 2860 ∩ cin 3209 ∅c0 3551 ∩ciin 3971 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ral 2620 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-dif 3216 df-ss 3260 df-nul 3552 df-iin 3973 |
This theorem is referenced by: riinrab 4042 |
Copyright terms: Public domain | W3C validator |