NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  iinrab2 GIF version

Theorem iinrab2 4030
Description: Indexed intersection of a restricted class builder. (Contributed by NM, 6-Dec-2011.)
Assertion
Ref Expression
iinrab2 (x A {y B φ} ∩ B) = {y B x A φ}
Distinct variable groups:   y,A,x   x,B,y
Allowed substitution hints:   φ(x,y)

Proof of Theorem iinrab2
StepHypRef Expression
1 iineq1 3984 . . . . . 6 (A = x A {y B φ} = x {y B φ})
2 0iin 4025 . . . . . 6 x {y B φ} = V
31, 2syl6eq 2401 . . . . 5 (A = x A {y B φ} = V)
43ineq1d 3457 . . . 4 (A = → (x A {y B φ} ∩ B) = (V ∩ B))
5 incom 3449 . . . . 5 (V ∩ B) = (B ∩ V)
6 inv1 3578 . . . . 5 (B ∩ V) = B
75, 6eqtri 2373 . . . 4 (V ∩ B) = B
84, 7syl6eq 2401 . . 3 (A = → (x A {y B φ} ∩ B) = B)
9 rzal 3652 . . . 4 (A = x A y B φ)
10 rabid2 2789 . . . . 5 (B = {y B x A φ} ↔ y B x A φ)
11 ralcom 2772 . . . . 5 (y B x A φx A y B φ)
1210, 11bitr2i 241 . . . 4 (x A y B φB = {y B x A φ})
139, 12sylib 188 . . 3 (A = B = {y B x A φ})
148, 13eqtrd 2385 . 2 (A = → (x A {y B φ} ∩ B) = {y B x A φ})
15 iinrab 4029 . . . 4 (Ax A {y B φ} = {y B x A φ})
1615ineq1d 3457 . . 3 (A → (x A {y B φ} ∩ B) = ({y B x A φ} ∩ B))
17 ssrab2 3352 . . . 4 {y B x A φ} B
18 dfss 3261 . . . 4 ({y B x A φ} B ↔ {y B x A φ} = ({y B x A φ} ∩ B))
1917, 18mpbi 199 . . 3 {y B x A φ} = ({y B x A φ} ∩ B)
2016, 19syl6eqr 2403 . 2 (A → (x A {y B φ} ∩ B) = {y B x A φ})
2114, 20pm2.61ine 2593 1 (x A {y B φ} ∩ B) = {y B x A φ}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1642  wne 2517  wral 2615  {crab 2619  Vcvv 2860  cin 3209   wss 3258  c0 3551  ciin 3971
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rab 2624  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-dif 3216  df-ss 3260  df-nul 3552  df-iin 3973
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator