| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > 19.28v | GIF version | ||
| Description: Theorem 19.28 of [Margaris] p. 90. (Contributed by NM, 25-Mar-2004.) |
| Ref | Expression |
|---|---|
| 19.28v | ⊢ (∀x(φ ∧ ψ) ↔ (φ ∧ ∀xψ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1619 | . 2 ⊢ Ⅎxφ | |
| 2 | 1 | 19.28 1870 | 1 ⊢ (∀x(φ ∧ ψ) ↔ (φ ∧ ∀xψ)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 176 ∧ wa 358 ∀wal 1540 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-nf 1545 |
| This theorem is referenced by: cbval2 2004 reu6 3026 |
| Copyright terms: Public domain | W3C validator |