Proof of Theorem cbval2
| Step | Hyp | Ref
| Expression |
| 1 | | cbval2.1 |
. . 3
⊢ Ⅎzφ |
| 2 | 1 | nfal 1842 |
. 2
⊢ Ⅎz∀yφ |
| 3 | | cbval2.3 |
. . 3
⊢ Ⅎxψ |
| 4 | 3 | nfal 1842 |
. 2
⊢ Ⅎx∀wψ |
| 5 | | nfv 1619 |
. . . . . 6
⊢ Ⅎw x = z |
| 6 | | cbval2.2 |
. . . . . 6
⊢ Ⅎwφ |
| 7 | 5, 6 | nfan 1824 |
. . . . 5
⊢ Ⅎw(x = z ∧ φ) |
| 8 | | nfv 1619 |
. . . . . 6
⊢ Ⅎy x = z |
| 9 | | cbval2.4 |
. . . . . 6
⊢ Ⅎyψ |
| 10 | 8, 9 | nfan 1824 |
. . . . 5
⊢ Ⅎy(x = z ∧ ψ) |
| 11 | | cbval2.5 |
. . . . . . 7
⊢ ((x = z ∧ y = w) → (φ
↔ ψ)) |
| 12 | 11 | expcom 424 |
. . . . . 6
⊢ (y = w →
(x = z
→ (φ ↔ ψ))) |
| 13 | 12 | pm5.32d 620 |
. . . . 5
⊢ (y = w →
((x = z
∧ φ)
↔ (x = z ∧ ψ))) |
| 14 | 7, 10, 13 | cbval 1984 |
. . . 4
⊢ (∀y(x = z ∧ φ) ↔
∀w(x = z ∧ ψ)) |
| 15 | | 19.28v 1895 |
. . . 4
⊢ (∀y(x = z ∧ φ) ↔
(x = z
∧ ∀yφ)) |
| 16 | | 19.28v 1895 |
. . . 4
⊢ (∀w(x = z ∧ ψ) ↔
(x = z
∧ ∀wψ)) |
| 17 | 14, 15, 16 | 3bitr3i 266 |
. . 3
⊢ ((x = z ∧ ∀yφ) ↔
(x = z
∧ ∀wψ)) |
| 18 | | pm5.32 617 |
. . 3
⊢ ((x = z →
(∀yφ ↔
∀wψ)) ↔ ((x = z ∧ ∀yφ) ↔
(x = z
∧ ∀wψ))) |
| 19 | 17, 18 | mpbir 200 |
. 2
⊢ (x = z →
(∀yφ ↔
∀wψ)) |
| 20 | 2, 4, 19 | cbval 1984 |
1
⊢ (∀x∀yφ ↔ ∀z∀wψ) |