Proof of Theorem cbval2
Step | Hyp | Ref
| Expression |
1 | | cbval2.1 |
. . 3
⊢ Ⅎzφ |
2 | 1 | nfal 1842 |
. 2
⊢ Ⅎz∀yφ |
3 | | cbval2.3 |
. . 3
⊢ Ⅎxψ |
4 | 3 | nfal 1842 |
. 2
⊢ Ⅎx∀wψ |
5 | | nfv 1619 |
. . . . . 6
⊢ Ⅎw x = z |
6 | | cbval2.2 |
. . . . . 6
⊢ Ⅎwφ |
7 | 5, 6 | nfan 1824 |
. . . . 5
⊢ Ⅎw(x = z ∧ φ) |
8 | | nfv 1619 |
. . . . . 6
⊢ Ⅎy x = z |
9 | | cbval2.4 |
. . . . . 6
⊢ Ⅎyψ |
10 | 8, 9 | nfan 1824 |
. . . . 5
⊢ Ⅎy(x = z ∧ ψ) |
11 | | cbval2.5 |
. . . . . . 7
⊢ ((x = z ∧ y = w) → (φ
↔ ψ)) |
12 | 11 | expcom 424 |
. . . . . 6
⊢ (y = w →
(x = z
→ (φ ↔ ψ))) |
13 | 12 | pm5.32d 620 |
. . . . 5
⊢ (y = w →
((x = z
∧ φ)
↔ (x = z ∧ ψ))) |
14 | 7, 10, 13 | cbval 1984 |
. . . 4
⊢ (∀y(x = z ∧ φ) ↔
∀w(x = z ∧ ψ)) |
15 | | 19.28v 1895 |
. . . 4
⊢ (∀y(x = z ∧ φ) ↔
(x = z
∧ ∀yφ)) |
16 | | 19.28v 1895 |
. . . 4
⊢ (∀w(x = z ∧ ψ) ↔
(x = z
∧ ∀wψ)) |
17 | 14, 15, 16 | 3bitr3i 266 |
. . 3
⊢ ((x = z ∧ ∀yφ) ↔
(x = z
∧ ∀wψ)) |
18 | | pm5.32 617 |
. . 3
⊢ ((x = z →
(∀yφ ↔
∀wψ)) ↔ ((x = z ∧ ∀yφ) ↔
(x = z
∧ ∀wψ))) |
19 | 17, 18 | mpbir 200 |
. 2
⊢ (x = z →
(∀yφ ↔
∀wψ)) |
20 | 2, 4, 19 | cbval 1984 |
1
⊢ (∀x∀yφ ↔ ∀z∀wψ) |