New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > 19.36v | GIF version |
Description: Special case of Theorem 19.36 of [Margaris] p. 90. (Contributed by NM, 18-Aug-1993.) |
Ref | Expression |
---|---|
19.36v | ⊢ (∃x(φ → ψ) ↔ (∀xφ → ψ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1619 | . 2 ⊢ Ⅎxψ | |
2 | 1 | 19.36 1871 | 1 ⊢ (∃x(φ → ψ) ↔ (∀xφ → ψ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∀wal 1540 ∃wex 1541 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-11 1746 |
This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-nf 1545 |
This theorem is referenced by: 19.12vv 1898 axext2 2335 vtocl2 2911 vtocl3 2912 |
Copyright terms: Public domain | W3C validator |