New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > 19.28 | GIF version |
Description: Theorem 19.28 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
19.28.1 | ⊢ Ⅎxφ |
Ref | Expression |
---|---|
19.28 | ⊢ (∀x(φ ∧ ψ) ↔ (φ ∧ ∀xψ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.26 1593 | . 2 ⊢ (∀x(φ ∧ ψ) ↔ (∀xφ ∧ ∀xψ)) | |
2 | 19.28.1 | . . . 4 ⊢ Ⅎxφ | |
3 | 2 | 19.3 1785 | . . 3 ⊢ (∀xφ ↔ φ) |
4 | 3 | anbi1i 676 | . 2 ⊢ ((∀xφ ∧ ∀xψ) ↔ (φ ∧ ∀xψ)) |
5 | 1, 4 | bitri 240 | 1 ⊢ (∀x(φ ∧ ψ) ↔ (φ ∧ ∀xψ)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∧ wa 358 ∀wal 1540 Ⅎwnf 1544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 |
This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-nf 1545 |
This theorem is referenced by: nfan1 1881 exan 1882 aaan 1884 19.28v 1895 |
Copyright terms: Public domain | W3C validator |