New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > 19.3 | GIF version |
Description: A wff may be quantified with a variable not free in it. Theorem 19.3 of [Margaris] p. 89. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 24-Sep-2016.) |
Ref | Expression |
---|---|
19.3.1 | ⊢ Ⅎxφ |
Ref | Expression |
---|---|
19.3 | ⊢ (∀xφ ↔ φ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sp 1747 | . 2 ⊢ (∀xφ → φ) | |
2 | 19.3.1 | . . 3 ⊢ Ⅎxφ | |
3 | 2 | nfri 1762 | . 2 ⊢ (φ → ∀xφ) |
4 | 1, 3 | impbii 180 | 1 ⊢ (∀xφ ↔ φ) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∀wal 1540 Ⅎwnf 1544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 |
This theorem depends on definitions: df-bi 177 df-ex 1542 df-nf 1545 |
This theorem is referenced by: 19.16 1860 19.17 1861 19.27 1869 19.28 1870 19.37 1873 equsal 1960 2eu4 2287 |
Copyright terms: Public domain | W3C validator |