| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > 19.3 | GIF version | ||
| Description: A wff may be quantified with a variable not free in it. Theorem 19.3 of [Margaris] p. 89. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 24-Sep-2016.) | 
| Ref | Expression | 
|---|---|
| 19.3.1 | ⊢ Ⅎxφ | 
| Ref | Expression | 
|---|---|
| 19.3 | ⊢ (∀xφ ↔ φ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sp 1747 | . 2 ⊢ (∀xφ → φ) | |
| 2 | 19.3.1 | . . 3 ⊢ Ⅎxφ | |
| 3 | 2 | nfri 1762 | . 2 ⊢ (φ → ∀xφ) | 
| 4 | 1, 3 | impbii 180 | 1 ⊢ (∀xφ ↔ φ) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ↔ wb 176 ∀wal 1540 Ⅎwnf 1544 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 | 
| This theorem depends on definitions: df-bi 177 df-ex 1542 df-nf 1545 | 
| This theorem is referenced by: 19.16 1860 19.17 1861 19.27 1869 19.28 1870 19.37 1873 equsal 1960 2eu4 2287 | 
| Copyright terms: Public domain | W3C validator |