Proof of Theorem 2eu4
| Step | Hyp | Ref
| Expression |
| 1 | | nfv 1619 |
. . . 4
⊢ Ⅎz∃yφ |
| 2 | 1 | eu3 2230 |
. . 3
⊢ (∃!x∃yφ ↔ (∃x∃yφ ∧ ∃z∀x(∃yφ → x = z))) |
| 3 | | nfv 1619 |
. . . 4
⊢ Ⅎw∃xφ |
| 4 | 3 | eu3 2230 |
. . 3
⊢ (∃!y∃xφ ↔ (∃y∃xφ ∧ ∃w∀y(∃xφ → y = w))) |
| 5 | 2, 4 | anbi12i 678 |
. 2
⊢ ((∃!x∃yφ ∧ ∃!y∃xφ) ↔ ((∃x∃yφ ∧ ∃z∀x(∃yφ → x = z)) ∧ (∃y∃xφ ∧ ∃w∀y(∃xφ →
y = w)))) |
| 6 | | an4 797 |
. 2
⊢ (((∃x∃yφ ∧ ∃z∀x(∃yφ → x = z)) ∧ (∃y∃xφ ∧ ∃w∀y(∃xφ →
y = w))) ↔ ((∃x∃yφ ∧ ∃y∃xφ) ∧ (∃z∀x(∃yφ → x = z) ∧ ∃w∀y(∃xφ →
y = w)))) |
| 7 | | excom 1741 |
. . . . 5
⊢ (∃y∃xφ ↔ ∃x∃yφ) |
| 8 | 7 | anbi2i 675 |
. . . 4
⊢ ((∃x∃yφ ∧ ∃y∃xφ) ↔ (∃x∃yφ ∧ ∃x∃yφ)) |
| 9 | | anidm 625 |
. . . 4
⊢ ((∃x∃yφ ∧ ∃x∃yφ) ↔ ∃x∃yφ) |
| 10 | 8, 9 | bitri 240 |
. . 3
⊢ ((∃x∃yφ ∧ ∃y∃xφ) ↔ ∃x∃yφ) |
| 11 | | 19.26 1593 |
. . . . . . . 8
⊢ (∀x(∀y(φ → x = z) ∧ ∀x∀y(φ →
y = w))
↔ (∀x∀y(φ →
x = z)
∧ ∀x∀x∀y(φ → y = w))) |
| 12 | | nfa1 1788 |
. . . . . . . . . . 11
⊢ Ⅎx∀x∀y(φ →
y = w) |
| 13 | 12 | 19.3 1785 |
. . . . . . . . . 10
⊢ (∀x∀x∀y(φ → y = w) ↔
∀x∀y(φ → y = w)) |
| 14 | 13 | anbi2i 675 |
. . . . . . . . 9
⊢ ((∀x∀y(φ → x = z) ∧ ∀x∀x∀y(φ →
y = w))
↔ (∀x∀y(φ →
x = z)
∧ ∀x∀y(φ → y = w))) |
| 15 | | jcab 833 |
. . . . . . . . . . . . 13
⊢ ((φ → (x = z ∧ y = w)) ↔ ((φ → x = z) ∧ (φ →
y = w))) |
| 16 | 15 | albii 1566 |
. . . . . . . . . . . 12
⊢ (∀y(φ → (x = z ∧ y = w)) ↔ ∀y((φ → x = z) ∧ (φ →
y = w))) |
| 17 | | 19.26 1593 |
. . . . . . . . . . . 12
⊢ (∀y((φ → x = z) ∧ (φ →
y = w))
↔ (∀y(φ →
x = z)
∧ ∀y(φ → y = w))) |
| 18 | 16, 17 | bitri 240 |
. . . . . . . . . . 11
⊢ (∀y(φ → (x = z ∧ y = w)) ↔ (∀y(φ → x = z) ∧ ∀y(φ →
y = w))) |
| 19 | 18 | albii 1566 |
. . . . . . . . . 10
⊢ (∀x∀y(φ → (x = z ∧ y = w)) ↔ ∀x(∀y(φ → x = z) ∧ ∀y(φ →
y = w))) |
| 20 | | 19.26 1593 |
. . . . . . . . . 10
⊢ (∀x(∀y(φ → x = z) ∧ ∀y(φ →
y = w))
↔ (∀x∀y(φ →
x = z)
∧ ∀x∀y(φ → y = w))) |
| 21 | 19, 20 | bitri 240 |
. . . . . . . . 9
⊢ (∀x∀y(φ → (x = z ∧ y = w)) ↔ (∀x∀y(φ → x = z) ∧ ∀x∀y(φ →
y = w))) |
| 22 | 14, 21 | bitr4i 243 |
. . . . . . . 8
⊢ ((∀x∀y(φ → x = z) ∧ ∀x∀x∀y(φ →
y = w))
↔ ∀x∀y(φ →
(x = z
∧ y =
w))) |
| 23 | 11, 22 | bitr2i 241 |
. . . . . . 7
⊢ (∀x∀y(φ → (x = z ∧ y = w)) ↔ ∀x(∀y(φ → x = z) ∧ ∀x∀y(φ →
y = w))) |
| 24 | | 19.26 1593 |
. . . . . . . . 9
⊢ (∀y(∀y(φ → x = z) ∧ ∀x(φ →
y = w))
↔ (∀y∀y(φ →
x = z)
∧ ∀y∀x(φ → y = w))) |
| 25 | | nfa1 1788 |
. . . . . . . . . . 11
⊢ Ⅎy∀y(φ →
x = z) |
| 26 | 25 | 19.3 1785 |
. . . . . . . . . 10
⊢ (∀y∀y(φ → x = z) ↔
∀y(φ →
x = z)) |
| 27 | | alcom 1737 |
. . . . . . . . . 10
⊢ (∀y∀x(φ → y = w) ↔
∀x∀y(φ → y = w)) |
| 28 | 26, 27 | anbi12i 678 |
. . . . . . . . 9
⊢ ((∀y∀y(φ → x = z) ∧ ∀y∀x(φ →
y = w))
↔ (∀y(φ →
x = z)
∧ ∀x∀y(φ → y = w))) |
| 29 | 24, 28 | bitri 240 |
. . . . . . . 8
⊢ (∀y(∀y(φ → x = z) ∧ ∀x(φ →
y = w))
↔ (∀y(φ →
x = z)
∧ ∀x∀y(φ → y = w))) |
| 30 | 29 | albii 1566 |
. . . . . . 7
⊢ (∀x∀y(∀y(φ → x = z) ∧ ∀x(φ →
y = w))
↔ ∀x(∀y(φ →
x = z)
∧ ∀x∀y(φ → y = w))) |
| 31 | 23, 30 | bitr4i 243 |
. . . . . 6
⊢ (∀x∀y(φ → (x = z ∧ y = w)) ↔ ∀x∀y(∀y(φ → x = z) ∧ ∀x(φ →
y = w))) |
| 32 | | 19.23v 1891 |
. . . . . . . 8
⊢ (∀y(φ → x = z) ↔
(∃yφ → x = z)) |
| 33 | | 19.23v 1891 |
. . . . . . . 8
⊢ (∀x(φ → y = w) ↔
(∃xφ → y = w)) |
| 34 | 32, 33 | anbi12i 678 |
. . . . . . 7
⊢ ((∀y(φ → x = z) ∧ ∀x(φ →
y = w))
↔ ((∃yφ →
x = z)
∧ (∃xφ → y = w))) |
| 35 | 34 | 2albii 1567 |
. . . . . 6
⊢ (∀x∀y(∀y(φ → x = z) ∧ ∀x(φ →
y = w))
↔ ∀x∀y((∃yφ →
x = z)
∧ (∃xφ → y = w))) |
| 36 | | nfe1 1732 |
. . . . . . . 8
⊢ Ⅎy∃yφ |
| 37 | | nfv 1619 |
. . . . . . . 8
⊢ Ⅎy x = z |
| 38 | 36, 37 | nfim 1813 |
. . . . . . 7
⊢ Ⅎy(∃yφ →
x = z) |
| 39 | | nfe1 1732 |
. . . . . . . 8
⊢ Ⅎx∃xφ |
| 40 | | nfv 1619 |
. . . . . . . 8
⊢ Ⅎx y = w |
| 41 | 39, 40 | nfim 1813 |
. . . . . . 7
⊢ Ⅎx(∃xφ →
y = w) |
| 42 | 38, 41 | aaan 1884 |
. . . . . 6
⊢ (∀x∀y((∃yφ → x = z) ∧ (∃xφ →
y = w))
↔ (∀x(∃yφ →
x = z)
∧ ∀y(∃xφ → y = w))) |
| 43 | 31, 35, 42 | 3bitri 262 |
. . . . 5
⊢ (∀x∀y(φ → (x = z ∧ y = w)) ↔ (∀x(∃yφ → x = z) ∧ ∀y(∃xφ →
y = w))) |
| 44 | 43 | 2exbii 1583 |
. . . 4
⊢ (∃z∃w∀x∀y(φ → (x = z ∧ y = w)) ↔ ∃z∃w(∀x(∃yφ → x = z) ∧ ∀y(∃xφ →
y = w))) |
| 45 | | eeanv 1913 |
. . . 4
⊢ (∃z∃w(∀x(∃yφ → x = z) ∧ ∀y(∃xφ →
y = w))
↔ (∃z∀x(∃yφ →
x = z)
∧ ∃w∀y(∃xφ →
y = w))) |
| 46 | 44, 45 | bitr2i 241 |
. . 3
⊢ ((∃z∀x(∃yφ → x = z) ∧ ∃w∀y(∃xφ →
y = w))
↔ ∃z∃w∀x∀y(φ →
(x = z
∧ y =
w))) |
| 47 | 10, 46 | anbi12i 678 |
. 2
⊢ (((∃x∃yφ ∧ ∃y∃xφ) ∧ (∃z∀x(∃yφ → x = z) ∧ ∃w∀y(∃xφ →
y = w))) ↔ (∃x∃yφ ∧ ∃z∃w∀x∀y(φ → (x = z ∧ y = w)))) |
| 48 | 5, 6, 47 | 3bitri 262 |
1
⊢ ((∃!x∃yφ ∧ ∃!y∃xφ) ↔ (∃x∃yφ ∧ ∃z∃w∀x∀y(φ → (x = z ∧ y = w)))) |