| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > 2albidv | GIF version | ||
| Description: Formula-building rule for 2 universal quantifiers (deduction rule). (Contributed by NM, 4-Mar-1997.) |
| Ref | Expression |
|---|---|
| 2albidv.1 | ⊢ (φ → (ψ ↔ χ)) |
| Ref | Expression |
|---|---|
| 2albidv | ⊢ (φ → (∀x∀yψ ↔ ∀x∀yχ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2albidv.1 | . . 3 ⊢ (φ → (ψ ↔ χ)) | |
| 2 | 1 | albidv 1625 | . 2 ⊢ (φ → (∀yψ ↔ ∀yχ)) |
| 3 | 2 | albidv 1625 | 1 ⊢ (φ → (∀x∀yψ ↔ ∀x∀yχ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 176 ∀wal 1540 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 |
| This theorem depends on definitions: df-bi 177 |
| This theorem is referenced by: 2mo 2282 2eu6 2289 nnsucelr 4429 ssfin 4471 ncfinlower 4484 dff13 5472 fnfrec 6321 |
| Copyright terms: Public domain | W3C validator |