Proof of Theorem sbnf2
Step | Hyp | Ref
| Expression |
1 | | 2albiim 1612 |
. 2
⊢ (∀y∀z([y / x]φ ↔ [z / x]φ) ↔ (∀y∀z([y / x]φ → [z / x]φ) ∧ ∀y∀z([z / x]φ → [y / x]φ))) |
2 | | df-nf 1545 |
. . . . 5
⊢ (Ⅎxφ ↔
∀x(φ →
∀xφ)) |
3 | | sbhb 2107 |
. . . . . 6
⊢ ((φ → ∀xφ) ↔ ∀z(φ → [z / x]φ)) |
4 | 3 | albii 1566 |
. . . . 5
⊢ (∀x(φ → ∀xφ) ↔ ∀x∀z(φ → [z / x]φ)) |
5 | | alcom 1737 |
. . . . 5
⊢ (∀x∀z(φ → [z / x]φ) ↔ ∀z∀x(φ → [z / x]φ)) |
6 | 2, 4, 5 | 3bitri 262 |
. . . 4
⊢ (Ⅎxφ ↔
∀z∀x(φ → [z / x]φ)) |
7 | | nfv 1619 |
. . . . . . 7
⊢ Ⅎy(φ →
[z / x]φ) |
8 | 7 | sb8 2092 |
. . . . . 6
⊢ (∀x(φ → [z / x]φ) ↔ ∀y[y / x](φ → [z / x]φ)) |
9 | | nfs1v 2106 |
. . . . . . . 8
⊢ Ⅎx[z / x]φ |
10 | 9 | sblim 2068 |
. . . . . . 7
⊢ ([y / x](φ → [z / x]φ) ↔ ([y / x]φ → [z / x]φ)) |
11 | 10 | albii 1566 |
. . . . . 6
⊢ (∀y[y / x](φ → [z / x]φ) ↔ ∀y([y / x]φ → [z / x]φ)) |
12 | 8, 11 | bitri 240 |
. . . . 5
⊢ (∀x(φ → [z / x]φ) ↔ ∀y([y / x]φ → [z / x]φ)) |
13 | 12 | albii 1566 |
. . . 4
⊢ (∀z∀x(φ → [z / x]φ) ↔ ∀z∀y([y / x]φ → [z / x]φ)) |
14 | | alcom 1737 |
. . . 4
⊢ (∀z∀y([y / x]φ → [z / x]φ) ↔ ∀y∀z([y / x]φ → [z / x]φ)) |
15 | 6, 13, 14 | 3bitri 262 |
. . 3
⊢ (Ⅎxφ ↔
∀y∀z([y / x]φ → [z / x]φ)) |
16 | | sbhb 2107 |
. . . . . 6
⊢ ((φ → ∀xφ) ↔ ∀y(φ → [y / x]φ)) |
17 | 16 | albii 1566 |
. . . . 5
⊢ (∀x(φ → ∀xφ) ↔ ∀x∀y(φ → [y / x]φ)) |
18 | | alcom 1737 |
. . . . 5
⊢ (∀x∀y(φ → [y / x]φ) ↔ ∀y∀x(φ → [y / x]φ)) |
19 | 2, 17, 18 | 3bitri 262 |
. . . 4
⊢ (Ⅎxφ ↔
∀y∀x(φ → [y / x]φ)) |
20 | | nfv 1619 |
. . . . . . 7
⊢ Ⅎz(φ →
[y / x]φ) |
21 | 20 | sb8 2092 |
. . . . . 6
⊢ (∀x(φ → [y / x]φ) ↔ ∀z[z / x](φ → [y / x]φ)) |
22 | | nfs1v 2106 |
. . . . . . . 8
⊢ Ⅎx[y / x]φ |
23 | 22 | sblim 2068 |
. . . . . . 7
⊢ ([z / x](φ → [y / x]φ) ↔ ([z / x]φ → [y / x]φ)) |
24 | 23 | albii 1566 |
. . . . . 6
⊢ (∀z[z / x](φ → [y / x]φ) ↔ ∀z([z / x]φ → [y / x]φ)) |
25 | 21, 24 | bitri 240 |
. . . . 5
⊢ (∀x(φ → [y / x]φ) ↔ ∀z([z / x]φ → [y / x]φ)) |
26 | 25 | albii 1566 |
. . . 4
⊢ (∀y∀x(φ → [y / x]φ) ↔ ∀y∀z([z / x]φ → [y / x]φ)) |
27 | 19, 26 | bitri 240 |
. . 3
⊢ (Ⅎxφ ↔
∀y∀z([z / x]φ → [y / x]φ)) |
28 | 15, 27 | anbi12i 678 |
. 2
⊢ ((Ⅎxφ ∧ Ⅎxφ) ↔ (∀y∀z([y / x]φ → [z / x]φ) ∧ ∀y∀z([z / x]φ → [y / x]φ))) |
29 | | anidm 625 |
. 2
⊢ ((Ⅎxφ ∧ Ⅎxφ) ↔ Ⅎxφ) |
30 | 1, 28, 29 | 3bitr2ri 265 |
1
⊢ (Ⅎxφ ↔
∀y∀z([y / x]φ ↔ [z / x]φ)) |