| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > 2euswap | GIF version | ||
| Description: A condition allowing swap of uniqueness and existential quantifiers. (Contributed by NM, 10-Apr-2004.) |
| Ref | Expression |
|---|---|
| 2euswap | ⊢ (∀x∃*yφ → (∃!x∃yφ → ∃!y∃xφ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | excomim 1742 | . . . 4 ⊢ (∃x∃yφ → ∃y∃xφ) | |
| 2 | 1 | a1i 10 | . . 3 ⊢ (∀x∃*yφ → (∃x∃yφ → ∃y∃xφ)) |
| 3 | 2moswap 2279 | . . 3 ⊢ (∀x∃*yφ → (∃*x∃yφ → ∃*y∃xφ)) | |
| 4 | 2, 3 | anim12d 546 | . 2 ⊢ (∀x∃*yφ → ((∃x∃yφ ∧ ∃*x∃yφ) → (∃y∃xφ ∧ ∃*y∃xφ))) |
| 5 | eu5 2242 | . 2 ⊢ (∃!x∃yφ ↔ (∃x∃yφ ∧ ∃*x∃yφ)) | |
| 6 | eu5 2242 | . 2 ⊢ (∃!y∃xφ ↔ (∃y∃xφ ∧ ∃*y∃xφ)) | |
| 7 | 4, 5, 6 | 3imtr4g 261 | 1 ⊢ (∀x∃*yφ → (∃!x∃yφ → ∃!y∃xφ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 358 ∀wal 1540 ∃wex 1541 ∃!weu 2204 ∃*wmo 2205 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 |
| This theorem is referenced by: euxfr2 3022 2reuswap 3039 |
| Copyright terms: Public domain | W3C validator |