New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > 2exeu | GIF version |
Description: Double existential uniqueness implies double uniqueness quantification. (Contributed by NM, 3-Dec-2001.) (Proof shortened by Mario Carneiro, 22-Dec-2016.) |
Ref | Expression |
---|---|
2exeu | ⊢ ((∃!x∃yφ ∧ ∃!y∃xφ) → ∃!x∃!yφ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eumo 2244 | . . . 4 ⊢ (∃!x∃yφ → ∃*x∃yφ) | |
2 | euex 2227 | . . . . 5 ⊢ (∃!yφ → ∃yφ) | |
3 | 2 | moimi 2251 | . . . 4 ⊢ (∃*x∃yφ → ∃*x∃!yφ) |
4 | 1, 3 | syl 15 | . . 3 ⊢ (∃!x∃yφ → ∃*x∃!yφ) |
5 | 2euex 2276 | . . 3 ⊢ (∃!y∃xφ → ∃x∃!yφ) | |
6 | 4, 5 | anim12ci 550 | . 2 ⊢ ((∃!x∃yφ ∧ ∃!y∃xφ) → (∃x∃!yφ ∧ ∃*x∃!yφ)) |
7 | eu5 2242 | . 2 ⊢ (∃!x∃!yφ ↔ (∃x∃!yφ ∧ ∃*x∃!yφ)) | |
8 | 6, 7 | sylibr 203 | 1 ⊢ ((∃!x∃yφ ∧ ∃!y∃xφ) → ∃!x∃!yφ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 ∃wex 1541 ∃!weu 2204 ∃*wmo 2205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 |
This theorem is referenced by: 2eu1 2284 2eu2 2285 2eu3 2286 |
Copyright terms: Public domain | W3C validator |