Proof of Theorem euxfr2
| Step | Hyp | Ref
| Expression |
| 1 | | 2euswap 2280 |
. . . 4
⊢ (∀x∃*y(x = A ∧ φ) →
(∃!x∃y(x = A ∧ φ) → ∃!y∃x(x = A ∧ φ))) |
| 2 | | euxfr2.2 |
. . . . . 6
⊢ ∃*y x = A |
| 3 | 2 | moani 2256 |
. . . . 5
⊢ ∃*y(φ ∧ x = A) |
| 4 | | ancom 437 |
. . . . . 6
⊢ ((φ ∧ x = A) ↔
(x = A
∧ φ)) |
| 5 | 4 | mobii 2240 |
. . . . 5
⊢ (∃*y(φ ∧ x = A) ↔
∃*y(x = A ∧ φ)) |
| 6 | 3, 5 | mpbi 199 |
. . . 4
⊢ ∃*y(x = A ∧ φ) |
| 7 | 1, 6 | mpg 1548 |
. . 3
⊢ (∃!x∃y(x = A ∧ φ) →
∃!y∃x(x = A ∧ φ)) |
| 8 | | 2euswap 2280 |
. . . 4
⊢ (∀y∃*x(x = A ∧ φ) →
(∃!y∃x(x = A ∧ φ) → ∃!x∃y(x = A ∧ φ))) |
| 9 | | moeq 3013 |
. . . . . 6
⊢ ∃*x x = A |
| 10 | 9 | moani 2256 |
. . . . 5
⊢ ∃*x(φ ∧ x = A) |
| 11 | 4 | mobii 2240 |
. . . . 5
⊢ (∃*x(φ ∧ x = A) ↔
∃*x(x = A ∧ φ)) |
| 12 | 10, 11 | mpbi 199 |
. . . 4
⊢ ∃*x(x = A ∧ φ) |
| 13 | 8, 12 | mpg 1548 |
. . 3
⊢ (∃!y∃x(x = A ∧ φ) →
∃!x∃y(x = A ∧ φ)) |
| 14 | 7, 13 | impbii 180 |
. 2
⊢ (∃!x∃y(x = A ∧ φ) ↔
∃!y∃x(x = A ∧ φ)) |
| 15 | | euxfr2.1 |
. . . 4
⊢ A ∈
V |
| 16 | | biidd 228 |
. . . 4
⊢ (x = A →
(φ ↔ φ)) |
| 17 | 15, 16 | ceqsexv 2895 |
. . 3
⊢ (∃x(x = A ∧ φ) ↔
φ) |
| 18 | 17 | eubii 2213 |
. 2
⊢ (∃!y∃x(x = A ∧ φ) ↔
∃!yφ) |
| 19 | 14, 18 | bitri 240 |
1
⊢ (∃!x∃y(x = A ∧ φ) ↔
∃!yφ) |