![]() |
New Foundations Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > NFE Home > Th. List > euxfr2 | GIF version |
Description: Transfer existential uniqueness from a variable x to another variable y contained in expression A. (Contributed by NM, 14-Nov-2004.) |
Ref | Expression |
---|---|
euxfr2.1 | ⊢ A ∈ V |
euxfr2.2 | ⊢ ∃*y x = A |
Ref | Expression |
---|---|
euxfr2 | ⊢ (∃!x∃y(x = A ∧ φ) ↔ ∃!yφ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2euswap 2280 | . . . 4 ⊢ (∀x∃*y(x = A ∧ φ) → (∃!x∃y(x = A ∧ φ) → ∃!y∃x(x = A ∧ φ))) | |
2 | euxfr2.2 | . . . . . 6 ⊢ ∃*y x = A | |
3 | 2 | moani 2256 | . . . . 5 ⊢ ∃*y(φ ∧ x = A) |
4 | ancom 437 | . . . . . 6 ⊢ ((φ ∧ x = A) ↔ (x = A ∧ φ)) | |
5 | 4 | mobii 2240 | . . . . 5 ⊢ (∃*y(φ ∧ x = A) ↔ ∃*y(x = A ∧ φ)) |
6 | 3, 5 | mpbi 199 | . . . 4 ⊢ ∃*y(x = A ∧ φ) |
7 | 1, 6 | mpg 1548 | . . 3 ⊢ (∃!x∃y(x = A ∧ φ) → ∃!y∃x(x = A ∧ φ)) |
8 | 2euswap 2280 | . . . 4 ⊢ (∀y∃*x(x = A ∧ φ) → (∃!y∃x(x = A ∧ φ) → ∃!x∃y(x = A ∧ φ))) | |
9 | moeq 3013 | . . . . . 6 ⊢ ∃*x x = A | |
10 | 9 | moani 2256 | . . . . 5 ⊢ ∃*x(φ ∧ x = A) |
11 | 4 | mobii 2240 | . . . . 5 ⊢ (∃*x(φ ∧ x = A) ↔ ∃*x(x = A ∧ φ)) |
12 | 10, 11 | mpbi 199 | . . . 4 ⊢ ∃*x(x = A ∧ φ) |
13 | 8, 12 | mpg 1548 | . . 3 ⊢ (∃!y∃x(x = A ∧ φ) → ∃!x∃y(x = A ∧ φ)) |
14 | 7, 13 | impbii 180 | . 2 ⊢ (∃!x∃y(x = A ∧ φ) ↔ ∃!y∃x(x = A ∧ φ)) |
15 | euxfr2.1 | . . . 4 ⊢ A ∈ V | |
16 | biidd 228 | . . . 4 ⊢ (x = A → (φ ↔ φ)) | |
17 | 15, 16 | ceqsexv 2895 | . . 3 ⊢ (∃x(x = A ∧ φ) ↔ φ) |
18 | 17 | eubii 2213 | . 2 ⊢ (∃!y∃x(x = A ∧ φ) ↔ ∃!yφ) |
19 | 14, 18 | bitri 240 | 1 ⊢ (∃!x∃y(x = A ∧ φ) ↔ ∃!yφ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 ∃wex 1541 = wceq 1642 ∈ wcel 1710 ∃!weu 2204 ∃*wmo 2205 Vcvv 2860 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-v 2862 |
This theorem is referenced by: euxfr 3023 |
Copyright terms: Public domain | W3C validator |