New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > 2euex | GIF version |
Description: Double quantification with existential uniqueness. (Contributed by NM, 3-Dec-2001.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) |
Ref | Expression |
---|---|
2euex | ⊢ (∃!x∃yφ → ∃y∃!xφ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eu5 2242 | . 2 ⊢ (∃!x∃yφ ↔ (∃x∃yφ ∧ ∃*x∃yφ)) | |
2 | excom 1741 | . . . 4 ⊢ (∃x∃yφ ↔ ∃y∃xφ) | |
3 | nfe1 1732 | . . . . . 6 ⊢ Ⅎy∃yφ | |
4 | 3 | nfmo 2221 | . . . . 5 ⊢ Ⅎy∃*x∃yφ |
5 | 19.8a 1756 | . . . . . . 7 ⊢ (φ → ∃yφ) | |
6 | 5 | moimi 2251 | . . . . . 6 ⊢ (∃*x∃yφ → ∃*xφ) |
7 | df-mo 2209 | . . . . . 6 ⊢ (∃*xφ ↔ (∃xφ → ∃!xφ)) | |
8 | 6, 7 | sylib 188 | . . . . 5 ⊢ (∃*x∃yφ → (∃xφ → ∃!xφ)) |
9 | 4, 8 | eximd 1770 | . . . 4 ⊢ (∃*x∃yφ → (∃y∃xφ → ∃y∃!xφ)) |
10 | 2, 9 | syl5bi 208 | . . 3 ⊢ (∃*x∃yφ → (∃x∃yφ → ∃y∃!xφ)) |
11 | 10 | impcom 419 | . 2 ⊢ ((∃x∃yφ ∧ ∃*x∃yφ) → ∃y∃!xφ) |
12 | 1, 11 | sylbi 187 | 1 ⊢ (∃!x∃yφ → ∃y∃!xφ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 ∃wex 1541 ∃!weu 2204 ∃*wmo 2205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 |
This theorem is referenced by: 2exeu 2281 |
Copyright terms: Public domain | W3C validator |