New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > 2eu2 | GIF version |
Description: Double existential uniqueness. (Contributed by NM, 3-Dec-2001.) |
Ref | Expression |
---|---|
2eu2 | ⊢ (∃!y∃xφ → (∃!x∃!yφ ↔ ∃!x∃yφ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eumo 2244 | . . 3 ⊢ (∃!y∃xφ → ∃*y∃xφ) | |
2 | 2moex 2275 | . . 3 ⊢ (∃*y∃xφ → ∀x∃*yφ) | |
3 | 2eu1 2284 | . . . 4 ⊢ (∀x∃*yφ → (∃!x∃!yφ ↔ (∃!x∃yφ ∧ ∃!y∃xφ))) | |
4 | simpl 443 | . . . 4 ⊢ ((∃!x∃yφ ∧ ∃!y∃xφ) → ∃!x∃yφ) | |
5 | 3, 4 | syl6bi 219 | . . 3 ⊢ (∀x∃*yφ → (∃!x∃!yφ → ∃!x∃yφ)) |
6 | 1, 2, 5 | 3syl 18 | . 2 ⊢ (∃!y∃xφ → (∃!x∃!yφ → ∃!x∃yφ)) |
7 | 2exeu 2281 | . . 3 ⊢ ((∃!x∃yφ ∧ ∃!y∃xφ) → ∃!x∃!yφ) | |
8 | 7 | expcom 424 | . 2 ⊢ (∃!y∃xφ → (∃!x∃yφ → ∃!x∃!yφ)) |
9 | 6, 8 | impbid 183 | 1 ⊢ (∃!y∃xφ → (∃!x∃!yφ ↔ ∃!x∃yφ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 ∀wal 1540 ∃wex 1541 ∃!weu 2204 ∃*wmo 2205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 |
This theorem is referenced by: 2eu8 2291 |
Copyright terms: Public domain | W3C validator |