NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  2rexbidva GIF version

Theorem 2rexbidva 2656
Description: Formula-building rule for restricted existential quantifiers (deduction rule). (Contributed by NM, 15-Dec-2004.)
Hypothesis
Ref Expression
2ralbidva.1 ((φ (x A y B)) → (ψχ))
Assertion
Ref Expression
2rexbidva (φ → (x A y B ψx A y B χ))
Distinct variable groups:   x,y,φ   y,A
Allowed substitution hints:   ψ(x,y)   χ(x,y)   A(x)   B(x,y)

Proof of Theorem 2rexbidva
StepHypRef Expression
1 2ralbidva.1 . . . 4 ((φ (x A y B)) → (ψχ))
21anassrs 629 . . 3 (((φ x A) y B) → (ψχ))
32rexbidva 2632 . 2 ((φ x A) → (y B ψy B χ))
43rexbidva 2632 1 (φ → (x A y B ψx A y B χ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   wa 358   wcel 1710  wrex 2616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-11 1746
This theorem depends on definitions:  df-bi 177  df-an 360  df-ex 1542  df-nf 1545  df-rex 2621
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator