| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > 2rexbidva | GIF version | ||
| Description: Formula-building rule for restricted existential quantifiers (deduction rule). (Contributed by NM, 15-Dec-2004.) |
| Ref | Expression |
|---|---|
| 2ralbidva.1 | ⊢ ((φ ∧ (x ∈ A ∧ y ∈ B)) → (ψ ↔ χ)) |
| Ref | Expression |
|---|---|
| 2rexbidva | ⊢ (φ → (∃x ∈ A ∃y ∈ B ψ ↔ ∃x ∈ A ∃y ∈ B χ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2ralbidva.1 | . . . 4 ⊢ ((φ ∧ (x ∈ A ∧ y ∈ B)) → (ψ ↔ χ)) | |
| 2 | 1 | anassrs 629 | . . 3 ⊢ (((φ ∧ x ∈ A) ∧ y ∈ B) → (ψ ↔ χ)) |
| 3 | 2 | rexbidva 2632 | . 2 ⊢ ((φ ∧ x ∈ A) → (∃y ∈ B ψ ↔ ∃y ∈ B χ)) |
| 4 | 3 | rexbidva 2632 | 1 ⊢ (φ → (∃x ∈ A ∃y ∈ B ψ ↔ ∃x ∈ A ∃y ∈ B χ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 ∈ wcel 1710 ∃wrex 2616 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-nf 1545 df-rex 2621 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |