New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > 2ralbidv | GIF version |
Description: Formula-building rule for restricted universal quantifiers (deduction rule). (Contributed by NM, 28-Jan-2006.) (Revised by Szymon Jaroszewicz, 16-Mar-2007.) |
Ref | Expression |
---|---|
2ralbidv.1 | ⊢ (φ → (ψ ↔ χ)) |
Ref | Expression |
---|---|
2ralbidv | ⊢ (φ → (∀x ∈ A ∀y ∈ B ψ ↔ ∀x ∈ A ∀y ∈ B χ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2ralbidv.1 | . . 3 ⊢ (φ → (ψ ↔ χ)) | |
2 | 1 | ralbidv 2635 | . 2 ⊢ (φ → (∀y ∈ B ψ ↔ ∀y ∈ B χ)) |
3 | 2 | ralbidv 2635 | 1 ⊢ (φ → (∀x ∈ A ∀y ∈ B ψ ↔ ∀x ∈ A ∀y ∈ B χ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∀wral 2615 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 |
This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-nf 1545 df-ral 2620 |
This theorem is referenced by: cbvral3v 2846 isoeq1 5483 isoeq2 5484 isoeq3 5485 trd 5922 extd 5924 symd 5925 trrd 5926 antird 5929 antid 5930 connexrd 5931 connexd 5932 iserd 5943 |
Copyright terms: Public domain | W3C validator |