Proof of Theorem pw1equn
Step | Hyp | Ref
| Expression |
1 | | unipw1 4326 |
. . . 4
⊢ ∪℘1C = C |
2 | | unieq 3901 |
. . . 4
⊢ (℘1C = (A ∪
B) → ∪℘1C = ∪(A ∪ B)) |
3 | 1, 2 | syl5eqr 2399 |
. . 3
⊢ (℘1C = (A ∪
B) → C = ∪(A ∪ B)) |
4 | | ssun1 3427 |
. . . . . 6
⊢ A ⊆ (A ∪ B) |
5 | | sseq2 3294 |
. . . . . 6
⊢ (℘1C = (A ∪
B) → (A ⊆ ℘1C ↔ A ⊆ (A ∪
B))) |
6 | 4, 5 | mpbiri 224 |
. . . . 5
⊢ (℘1C = (A ∪
B) → A ⊆ ℘1C) |
7 | | pw1ss1c 4159 |
. . . . 5
⊢ ℘1C ⊆
1c |
8 | 6, 7 | syl6ss 3285 |
. . . 4
⊢ (℘1C = (A ∪
B) → A ⊆
1c) |
9 | | eqpw1uni 4331 |
. . . 4
⊢ (A ⊆
1c → A = ℘1∪A) |
10 | 8, 9 | syl 15 |
. . 3
⊢ (℘1C = (A ∪
B) → A = ℘1∪A) |
11 | | ssun2 3428 |
. . . . . 6
⊢ B ⊆ (A ∪ B) |
12 | | sseq2 3294 |
. . . . . 6
⊢ (℘1C = (A ∪
B) → (B ⊆ ℘1C ↔ B ⊆ (A ∪
B))) |
13 | 11, 12 | mpbiri 224 |
. . . . 5
⊢ (℘1C = (A ∪
B) → B ⊆ ℘1C) |
14 | 13, 7 | syl6ss 3285 |
. . . 4
⊢ (℘1C = (A ∪
B) → B ⊆
1c) |
15 | | eqpw1uni 4331 |
. . . 4
⊢ (B ⊆
1c → B = ℘1∪B) |
16 | 14, 15 | syl 15 |
. . 3
⊢ (℘1C = (A ∪
B) → B = ℘1∪B) |
17 | | pw1equn.1 |
. . . . 5
⊢ A ∈
V |
18 | 17 | uniex 4318 |
. . . 4
⊢ ∪A ∈ V |
19 | | pw1equn.2 |
. . . . 5
⊢ B ∈
V |
20 | 19 | uniex 4318 |
. . . 4
⊢ ∪B ∈ V |
21 | | uneq12 3414 |
. . . . . . 7
⊢ ((x = ∪A ∧ y = ∪B) → (x
∪ y) = (∪A ∪ ∪B)) |
22 | | uniun 3911 |
. . . . . . 7
⊢ ∪(A ∪ B) = (∪A ∪ ∪B) |
23 | 21, 22 | syl6eqr 2403 |
. . . . . 6
⊢ ((x = ∪A ∧ y = ∪B) → (x
∪ y) = ∪(A ∪ B)) |
24 | 23 | eqeq2d 2364 |
. . . . 5
⊢ ((x = ∪A ∧ y = ∪B) → (C =
(x ∪ y) ↔ C =
∪(A ∪
B))) |
25 | | pw1eq 4144 |
. . . . . . 7
⊢ (x = ∪A → ℘1x = ℘1∪A) |
26 | 25 | eqeq2d 2364 |
. . . . . 6
⊢ (x = ∪A → (A =
℘1x ↔ A =
℘1∪A)) |
27 | 26 | adantr 451 |
. . . . 5
⊢ ((x = ∪A ∧ y = ∪B) → (A =
℘1x ↔ A =
℘1∪A)) |
28 | | pw1eq 4144 |
. . . . . . 7
⊢ (y = ∪B → ℘1y = ℘1∪B) |
29 | 28 | eqeq2d 2364 |
. . . . . 6
⊢ (y = ∪B → (B =
℘1y ↔ B =
℘1∪B)) |
30 | 29 | adantl 452 |
. . . . 5
⊢ ((x = ∪A ∧ y = ∪B) → (B =
℘1y ↔ B =
℘1∪B)) |
31 | 24, 27, 30 | 3anbi123d 1252 |
. . . 4
⊢ ((x = ∪A ∧ y = ∪B) → ((C =
(x ∪ y) ∧ A = ℘1x ∧ B = ℘1y) ↔ (C =
∪(A ∪
B) ∧
A = ℘1∪A ∧ B = ℘1∪B))) |
32 | 18, 20, 31 | spc2ev 2948 |
. . 3
⊢ ((C = ∪(A ∪ B) ∧ A = ℘1∪A ∧ B = ℘1∪B) → ∃x∃y(C = (x ∪
y) ∧
A = ℘1x ∧ B = ℘1y)) |
33 | 3, 10, 16, 32 | syl3anc 1182 |
. 2
⊢ (℘1C = (A ∪
B) → ∃x∃y(C = (x ∪
y) ∧
A = ℘1x ∧ B = ℘1y)) |
34 | | pw1un 4164 |
. . . 4
⊢ ℘1(x ∪ y) =
(℘1x ∪ ℘1y) |
35 | | pw1eq 4144 |
. . . . . 6
⊢ (C = (x ∪
y) → ℘1C = ℘1(x ∪ y)) |
36 | | uneq12 3414 |
. . . . . 6
⊢ ((A = ℘1x ∧ B = ℘1y) → (A
∪ B) = (℘1x ∪ ℘1y)) |
37 | 35, 36 | eqeqan12d 2368 |
. . . . 5
⊢ ((C = (x ∪
y) ∧
(A = ℘1x ∧ B = ℘1y)) → (℘1C = (A ∪
B) ↔ ℘1(x ∪ y) =
(℘1x ∪ ℘1y))) |
38 | 37 | 3impb 1147 |
. . . 4
⊢ ((C = (x ∪
y) ∧
A = ℘1x ∧ B = ℘1y) → (℘1C = (A ∪
B) ↔ ℘1(x ∪ y) =
(℘1x ∪ ℘1y))) |
39 | 34, 38 | mpbiri 224 |
. . 3
⊢ ((C = (x ∪
y) ∧
A = ℘1x ∧ B = ℘1y) → ℘1C = (A ∪
B)) |
40 | 39 | exlimivv 1635 |
. 2
⊢ (∃x∃y(C = (x ∪
y) ∧
A = ℘1x ∧ B = ℘1y) → ℘1C = (A ∪
B)) |
41 | 33, 40 | impbii 180 |
1
⊢ (℘1C = (A ∪
B) ↔ ∃x∃y(C = (x ∪
y) ∧
A = ℘1x ∧ B = ℘1y)) |