| Step | Hyp | Ref
| Expression |
| 1 | | elnc 6126 |
. . . . . . . . 9
⊢ (℘1p ∈ Nc ℘1A ↔ ℘1p ≈ ℘1A) |
| 2 | | enpw1 6063 |
. . . . . . . . 9
⊢ (p ≈ A
↔ ℘1p ≈ ℘1A) |
| 3 | 1, 2 | bitr4i 243 |
. . . . . . . 8
⊢ (℘1p ∈ Nc ℘1A ↔ p
≈ A) |
| 4 | | elnc 6126 |
. . . . . . . . 9
⊢ (℘1t ∈ Nc ℘1B ↔ ℘1t ≈ ℘1B) |
| 5 | | enpw1 6063 |
. . . . . . . . 9
⊢ (t ≈ B
↔ ℘1t ≈ ℘1B) |
| 6 | 4, 5 | bitr4i 243 |
. . . . . . . 8
⊢ (℘1t ∈ Nc ℘1B ↔ t
≈ B) |
| 7 | | enmap1 6075 |
. . . . . . . . 9
⊢ (p ≈ A
→ (p ↑m
t) ≈ (A ↑m t)) |
| 8 | | enmap2 6069 |
. . . . . . . . 9
⊢ (t ≈ B
→ (A ↑m
t) ≈ (A ↑m B)) |
| 9 | | entr 6039 |
. . . . . . . . 9
⊢ (((p ↑m t) ≈ (A
↑m t) ∧ (A
↑m t) ≈
(A ↑m B)) → (p
↑m t) ≈
(A ↑m B)) |
| 10 | 7, 8, 9 | syl2an 463 |
. . . . . . . 8
⊢ ((p ≈ A
∧ t
≈ B) → (p ↑m t) ≈ (A
↑m B)) |
| 11 | 3, 6, 10 | syl2anb 465 |
. . . . . . 7
⊢ ((℘1p ∈ Nc ℘1A ∧ ℘1t ∈ Nc ℘1B) → (p
↑m t) ≈
(A ↑m B)) |
| 12 | | entr 6039 |
. . . . . . . 8
⊢ ((g ≈ (p
↑m t) ∧ (p
↑m t) ≈
(A ↑m B)) → g
≈ (A ↑m
B)) |
| 13 | 12 | ancoms 439 |
. . . . . . 7
⊢ (((p ↑m t) ≈ (A
↑m B) ∧ g ≈
(p ↑m t)) → g
≈ (A ↑m
B)) |
| 14 | 11, 13 | sylan 457 |
. . . . . 6
⊢ (((℘1p ∈ Nc ℘1A ∧ ℘1t ∈ Nc ℘1B) ∧ g ≈ (p
↑m t)) →
g ≈ (A ↑m B)) |
| 15 | 14 | 3impa 1146 |
. . . . 5
⊢ ((℘1p ∈ Nc ℘1A ∧ ℘1t ∈ Nc ℘1B ∧ g ≈ (p
↑m t)) →
g ≈ (A ↑m B)) |
| 16 | 15 | exlimivv 1635 |
. . . 4
⊢ (∃p∃t(℘1p ∈ Nc ℘1A ∧ ℘1t ∈ Nc ℘1B ∧ g ≈ (p
↑m t)) →
g ≈ (A ↑m B)) |
| 17 | | cenc.1 |
. . . . . . 7
⊢ A ∈
V |
| 18 | 17 | pw1ex 4304 |
. . . . . 6
⊢ ℘1A ∈
V |
| 19 | 18 | ncelncsi 6122 |
. . . . 5
⊢ Nc ℘1A ∈ NC |
| 20 | | cenc.2 |
. . . . . . 7
⊢ B ∈
V |
| 21 | 20 | pw1ex 4304 |
. . . . . 6
⊢ ℘1B ∈
V |
| 22 | 21 | ncelncsi 6122 |
. . . . 5
⊢ Nc ℘1B ∈ NC |
| 23 | | elce 6176 |
. . . . 5
⊢ (( Nc ℘1A ∈ NC ∧ Nc ℘1B ∈ NC ) → (g ∈ ( Nc ℘1A ↑c Nc ℘1B) ↔ ∃p∃t(℘1p ∈ Nc ℘1A ∧ ℘1t ∈ Nc ℘1B ∧ g ≈ (p
↑m t)))) |
| 24 | 19, 22, 23 | mp2an 653 |
. . . 4
⊢ (g ∈ ( Nc ℘1A ↑c Nc ℘1B) ↔ ∃p∃t(℘1p ∈ Nc ℘1A ∧ ℘1t ∈ Nc ℘1B ∧ g ≈ (p
↑m t))) |
| 25 | | elnc 6126 |
. . . 4
⊢ (g ∈ Nc (A
↑m B) ↔
g ≈ (A ↑m B)) |
| 26 | 16, 24, 25 | 3imtr4i 257 |
. . 3
⊢ (g ∈ ( Nc ℘1A ↑c Nc ℘1B) → g
∈ Nc (A ↑m B)) |
| 27 | 26 | ssriv 3278 |
. 2
⊢ ( Nc ℘1A ↑c Nc ℘1B) ⊆ Nc (A
↑m B) |
| 28 | 18 | ncid 6124 |
. . . . 5
⊢ ℘1A ∈ Nc ℘1A |
| 29 | 21 | ncid 6124 |
. . . . 5
⊢ ℘1B ∈ Nc ℘1B |
| 30 | | pw1eq 4144 |
. . . . . . . . 9
⊢ (a = A →
℘1a = ℘1A) |
| 31 | 30 | eleq1d 2419 |
. . . . . . . 8
⊢ (a = A →
(℘1a ∈ Nc ℘1A ↔ ℘1A ∈ Nc ℘1A)) |
| 32 | 31 | adantr 451 |
. . . . . . 7
⊢ ((a = A ∧ b = B) → (℘1a ∈ Nc ℘1A ↔ ℘1A ∈ Nc ℘1A)) |
| 33 | | pw1eq 4144 |
. . . . . . . . 9
⊢ (b = B →
℘1b = ℘1B) |
| 34 | 33 | eleq1d 2419 |
. . . . . . . 8
⊢ (b = B →
(℘1b ∈ Nc ℘1B ↔ ℘1B ∈ Nc ℘1B)) |
| 35 | 34 | adantl 452 |
. . . . . . 7
⊢ ((a = A ∧ b = B) → (℘1b ∈ Nc ℘1B ↔ ℘1B ∈ Nc ℘1B)) |
| 36 | | oveq12 5533 |
. . . . . . . 8
⊢ ((a = A ∧ b = B) → (a
↑m b) = (A ↑m B)) |
| 37 | 36 | breq2d 4652 |
. . . . . . 7
⊢ ((a = A ∧ b = B) → (g
≈ (a ↑m
b) ↔ g ≈ (A
↑m B))) |
| 38 | 32, 35, 37 | 3anbi123d 1252 |
. . . . . 6
⊢ ((a = A ∧ b = B) → ((℘1a ∈ Nc ℘1A ∧ ℘1b ∈ Nc ℘1B ∧ g ≈ (a
↑m b)) ↔ (℘1A ∈ Nc ℘1A ∧ ℘1B ∈ Nc ℘1B ∧ g ≈ (A
↑m B)))) |
| 39 | 17, 20, 38 | spc2ev 2948 |
. . . . 5
⊢ ((℘1A ∈ Nc ℘1A ∧ ℘1B ∈ Nc ℘1B ∧ g ≈ (A
↑m B)) → ∃a∃b(℘1a ∈ Nc ℘1A ∧ ℘1b ∈ Nc ℘1B ∧ g ≈ (a
↑m b))) |
| 40 | 28, 29, 39 | mp3an12 1267 |
. . . 4
⊢ (g ≈ (A
↑m B) → ∃a∃b(℘1a ∈ Nc ℘1A ∧ ℘1b ∈ Nc ℘1B ∧ g ≈ (a
↑m b))) |
| 41 | | elce 6176 |
. . . . 5
⊢ (( Nc ℘1A ∈ NC ∧ Nc ℘1B ∈ NC ) → (g ∈ ( Nc ℘1A ↑c Nc ℘1B) ↔ ∃a∃b(℘1a ∈ Nc ℘1A ∧ ℘1b ∈ Nc ℘1B ∧ g ≈ (a
↑m b)))) |
| 42 | 19, 22, 41 | mp2an 653 |
. . . 4
⊢ (g ∈ ( Nc ℘1A ↑c Nc ℘1B) ↔ ∃a∃b(℘1a ∈ Nc ℘1A ∧ ℘1b ∈ Nc ℘1B ∧ g ≈ (a
↑m b))) |
| 43 | 40, 25, 42 | 3imtr4i 257 |
. . 3
⊢ (g ∈ Nc (A
↑m B) →
g ∈ (
Nc ℘1A ↑c Nc ℘1B)) |
| 44 | 43 | ssriv 3278 |
. 2
⊢ Nc (A
↑m B) ⊆ ( Nc ℘1A ↑c Nc ℘1B) |
| 45 | 27, 44 | eqssi 3289 |
1
⊢ ( Nc ℘1A ↑c Nc ℘1B) = Nc (A ↑m B) |