New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > ax11wdemo | GIF version |
Description: Example of an application of ax11w 1721 that results in an instance of ax-11 1746 for a contrived formula with mixed free and bound variables, (x ∈ y ∧ ∀xz ∈ x ∧ ∀y∀zy ∈ x), in place of φ. The proof illustrates bound variable renaming with cbvalvw 1702 to obtain fresh variables to avoid distinct variable clashes. Uses only Tarski's FOL axiom schemes. (Contributed by NM, 14-Apr-2017.) |
Ref | Expression |
---|---|
ax11wdemo | ⊢ (x = y → (∀y(x ∈ y ∧ ∀x z ∈ x ∧ ∀y∀z y ∈ x) → ∀x(x = y → (x ∈ y ∧ ∀x z ∈ x ∧ ∀y∀z y ∈ x)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elequ1 1713 | . . 3 ⊢ (x = y → (x ∈ y ↔ y ∈ y)) | |
2 | elequ2 1715 | . . . . 5 ⊢ (x = w → (z ∈ x ↔ z ∈ w)) | |
3 | 2 | cbvalvw 1702 | . . . 4 ⊢ (∀x z ∈ x ↔ ∀w z ∈ w) |
4 | 3 | a1i 10 | . . 3 ⊢ (x = y → (∀x z ∈ x ↔ ∀w z ∈ w)) |
5 | elequ1 1713 | . . . . . 6 ⊢ (y = v → (y ∈ x ↔ v ∈ x)) | |
6 | 5 | albidv 1625 | . . . . 5 ⊢ (y = v → (∀z y ∈ x ↔ ∀z v ∈ x)) |
7 | 6 | cbvalvw 1702 | . . . 4 ⊢ (∀y∀z y ∈ x ↔ ∀v∀z v ∈ x) |
8 | elequ2 1715 | . . . . . 6 ⊢ (x = y → (v ∈ x ↔ v ∈ y)) | |
9 | 8 | albidv 1625 | . . . . 5 ⊢ (x = y → (∀z v ∈ x ↔ ∀z v ∈ y)) |
10 | 9 | albidv 1625 | . . . 4 ⊢ (x = y → (∀v∀z v ∈ x ↔ ∀v∀z v ∈ y)) |
11 | 7, 10 | syl5bb 248 | . . 3 ⊢ (x = y → (∀y∀z y ∈ x ↔ ∀v∀z v ∈ y)) |
12 | 1, 4, 11 | 3anbi123d 1252 | . 2 ⊢ (x = y → ((x ∈ y ∧ ∀x z ∈ x ∧ ∀y∀z y ∈ x) ↔ (y ∈ y ∧ ∀w z ∈ w ∧ ∀v∀z v ∈ y))) |
13 | elequ2 1715 | . . 3 ⊢ (y = v → (x ∈ y ↔ x ∈ v)) | |
14 | 7 | a1i 10 | . . 3 ⊢ (y = v → (∀y∀z y ∈ x ↔ ∀v∀z v ∈ x)) |
15 | 13, 14 | 3anbi13d 1254 | . 2 ⊢ (y = v → ((x ∈ y ∧ ∀x z ∈ x ∧ ∀y∀z y ∈ x) ↔ (x ∈ v ∧ ∀x z ∈ x ∧ ∀v∀z v ∈ x))) |
16 | 12, 15 | ax11w 1721 | 1 ⊢ (x = y → (∀y(x ∈ y ∧ ∀x z ∈ x ∧ ∀y∀z y ∈ x) → ∀x(x = y → (x ∈ y ∧ ∀x z ∈ x ∧ ∀y∀z y ∈ x)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ w3a 934 ∀wal 1540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 |
This theorem depends on definitions: df-bi 177 df-an 360 df-3an 936 df-ex 1542 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |