NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  3bitr2ri GIF version

Theorem 3bitr2ri 265
Description: A chained inference from transitive law for logical equivalence. (Contributed by NM, 4-Aug-2006.)
Hypotheses
Ref Expression
3bitr2i.1 (φψ)
3bitr2i.2 (χψ)
3bitr2i.3 (χθ)
Assertion
Ref Expression
3bitr2ri (θφ)

Proof of Theorem 3bitr2ri
StepHypRef Expression
1 3bitr2i.1 . . 3 (φψ)
2 3bitr2i.2 . . 3 (χψ)
31, 2bitr4i 243 . 2 (φχ)
4 3bitr2i.3 . 2 (χθ)
53, 4bitr2i 241 1 (θφ)
Colors of variables: wff setvar class
Syntax hints:  wb 176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177
This theorem is referenced by:  sbnf2  2108  ssrab  3345  unipw1  4326  dmopab3  4918  dfres2  5003  ssrnres  5060  df2nd2  5112  dfnnc3  5886  enex  6032
  Copyright terms: Public domain W3C validator