New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > 3bitr2ri | GIF version |
Description: A chained inference from transitive law for logical equivalence. (Contributed by NM, 4-Aug-2006.) |
Ref | Expression |
---|---|
3bitr2i.1 | ⊢ (φ ↔ ψ) |
3bitr2i.2 | ⊢ (χ ↔ ψ) |
3bitr2i.3 | ⊢ (χ ↔ θ) |
Ref | Expression |
---|---|
3bitr2ri | ⊢ (θ ↔ φ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitr2i.1 | . . 3 ⊢ (φ ↔ ψ) | |
2 | 3bitr2i.2 | . . 3 ⊢ (χ ↔ ψ) | |
3 | 1, 2 | bitr4i 243 | . 2 ⊢ (φ ↔ χ) |
4 | 3bitr2i.3 | . 2 ⊢ (χ ↔ θ) | |
5 | 3, 4 | bitr2i 241 | 1 ⊢ (θ ↔ φ) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 |
This theorem is referenced by: sbnf2 2108 ssrab 3345 unipw1 4326 dmopab3 4918 dfres2 5003 ssrnres 5060 df2nd2 5112 dfnnc3 5886 enex 6032 |
Copyright terms: Public domain | W3C validator |