NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  unipw1 GIF version

Theorem unipw1 4326
Description: The union of a unit power class is the original set. (Contributed by SF, 20-Jan-2015.)
Assertion
Ref Expression
unipw1 1A = A

Proof of Theorem unipw1
Dummy variables x y z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eluni 3895 . . 3 (x 1Ay(x y y 1A))
2 elpw1 4145 . . . . . 6 (y 1Az A y = {z})
32anbi1i 676 . . . . 5 ((y 1A x y) ↔ (z A y = {z} x y))
4 ancom 437 . . . . 5 ((x y y 1A) ↔ (y 1A x y))
5 r19.41v 2765 . . . . 5 (z A (y = {z} x y) ↔ (z A y = {z} x y))
63, 4, 53bitr4i 268 . . . 4 ((x y y 1A) ↔ z A (y = {z} x y))
76exbii 1582 . . 3 (y(x y y 1A) ↔ yz A (y = {z} x y))
8 risset 2662 . . . 4 (x Az A z = x)
9 snex 4112 . . . . . . 7 {z} V
10 eleq2 2414 . . . . . . 7 (y = {z} → (x yx {z}))
119, 10ceqsexv 2895 . . . . . 6 (y(y = {z} x y) ↔ x {z})
12 df-sn 3742 . . . . . . 7 {z} = {x x = z}
1312abeq2i 2461 . . . . . 6 (x {z} ↔ x = z)
14 equcom 1680 . . . . . 6 (x = zz = x)
1511, 13, 143bitri 262 . . . . 5 (y(y = {z} x y) ↔ z = x)
1615rexbii 2640 . . . 4 (z A y(y = {z} x y) ↔ z A z = x)
17 rexcom4 2879 . . . 4 (z A y(y = {z} x y) ↔ yz A (y = {z} x y))
188, 16, 173bitr2ri 265 . . 3 (yz A (y = {z} x y) ↔ x A)
191, 7, 183bitri 262 . 2 (x 1Ax A)
2019eqriv 2350 1 1A = A
Colors of variables: wff setvar class
Syntax hints:   wa 358  wex 1541   = wceq 1642   wcel 1710  wrex 2616  {csn 3738  cuni 3892  1cpw1 4136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-rex 2621  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-ss 3260  df-nul 3552  df-pw 3725  df-sn 3742  df-uni 3893  df-1c 4137  df-pw1 4138
This theorem is referenced by:  pw1exb  4327  pw1equn  4332  pw1eqadj  4333  sspw1  4336
  Copyright terms: Public domain W3C validator