| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > 3exdistr | GIF version | ||
| Description: Distribution of existential quantifiers. (Contributed by NM, 9-Mar-1995.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
| Ref | Expression |
|---|---|
| 3exdistr | ⊢ (∃x∃y∃z(φ ∧ ψ ∧ χ) ↔ ∃x(φ ∧ ∃y(ψ ∧ ∃zχ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3anass 938 | . . . 4 ⊢ ((φ ∧ ψ ∧ χ) ↔ (φ ∧ (ψ ∧ χ))) | |
| 2 | 1 | 2exbii 1583 | . . 3 ⊢ (∃y∃z(φ ∧ ψ ∧ χ) ↔ ∃y∃z(φ ∧ (ψ ∧ χ))) |
| 3 | 19.42vv 1907 | . . 3 ⊢ (∃y∃z(φ ∧ (ψ ∧ χ)) ↔ (φ ∧ ∃y∃z(ψ ∧ χ))) | |
| 4 | exdistr 1906 | . . . 4 ⊢ (∃y∃z(ψ ∧ χ) ↔ ∃y(ψ ∧ ∃zχ)) | |
| 5 | 4 | anbi2i 675 | . . 3 ⊢ ((φ ∧ ∃y∃z(ψ ∧ χ)) ↔ (φ ∧ ∃y(ψ ∧ ∃zχ))) |
| 6 | 2, 3, 5 | 3bitri 262 | . 2 ⊢ (∃y∃z(φ ∧ ψ ∧ χ) ↔ (φ ∧ ∃y(ψ ∧ ∃zχ))) |
| 7 | 6 | exbii 1582 | 1 ⊢ (∃x∃y∃z(φ ∧ ψ ∧ χ) ↔ ∃x(φ ∧ ∃y(ψ ∧ ∃zχ))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 176 ∧ wa 358 ∧ w3a 934 ∃wex 1541 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-11 1746 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-3an 936 df-ex 1542 df-nf 1545 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |